"src/targets/gpu/vscode:/vscode.git/clone" did not exist on "4637bcd832b54b26aa333e9e0ef6002337eff04c"
infer_rec.py 5.54 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
WenmuZhou's avatar
WenmuZhou committed
20

LDOUBLEV's avatar
LDOUBLEV committed
21
22
import os
import sys
littletomatodonkey's avatar
littletomatodonkey committed
23
import json
WenmuZhou's avatar
WenmuZhou committed
24

25
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
26
sys.path.append(__dir__)
27
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
LDOUBLEV committed
28

29
30
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

WenmuZhou's avatar
WenmuZhou committed
31
import paddle
tink2123's avatar
tink2123 committed
32

WenmuZhou's avatar
WenmuZhou committed
33
from ppocr.data import create_operators, transform
WenmuZhou's avatar
WenmuZhou committed
34
from ppocr.modeling.architectures import build_model
WenmuZhou's avatar
WenmuZhou committed
35
from ppocr.postprocess import build_post_process
36
from ppocr.utils.save_load import load_model
WenmuZhou's avatar
WenmuZhou committed
37
from ppocr.utils.utility import get_image_file_list
WenmuZhou's avatar
WenmuZhou committed
38
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
39
40
41


def main():
WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
48
49
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    if hasattr(post_process_class, 'character'):
littletomatodonkey's avatar
littletomatodonkey committed
50
51
52
53
54
55
56
57
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
                config['Architecture']["Models"][key]["Head"][
                    'out_channels'] = char_num
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num
WenmuZhou's avatar
WenmuZhou committed
58
59
60

    model = build_model(config['Architecture'])

61
    load_model(config, model)
WenmuZhou's avatar
WenmuZhou committed
62
63
64

    # create data ops
    transforms = []
WenmuZhou's avatar
WenmuZhou committed
65
    for op in config['Eval']['dataset']['transforms']:
WenmuZhou's avatar
WenmuZhou committed
66
67
68
69
70
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
WenmuZhou's avatar
WenmuZhou committed
71
        elif op_name == 'KeepKeys':
tink2123's avatar
tink2123 committed
72
73
74
75
76
            if config['Architecture']['algorithm'] == "SRN":
                op[op_name]['keep_keys'] = [
                    'image', 'encoder_word_pos', 'gsrm_word_pos',
                    'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
                ]
andyjpaddle's avatar
andyjpaddle committed
77
            elif config['Architecture']['algorithm'] == "SAR":
78
                op[op_name]['keep_keys'] = ['image', 'valid_ratio']
tink2123's avatar
tink2123 committed
79
80
            else:
                op[op_name]['keep_keys'] = ['image']
WenmuZhou's avatar
WenmuZhou committed
81
82
83
84
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

littletomatodonkey's avatar
littletomatodonkey committed
85
86
87
88
89
    save_res_path = config['Global'].get('save_res_path',
                                         "./output/rec/predicts_rec.txt")
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

WenmuZhou's avatar
WenmuZhou committed
90
    model.eval()
littletomatodonkey's avatar
littletomatodonkey committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    with open(save_res_path, "w") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            if config['Architecture']['algorithm'] == "SRN":
                encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
                gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
                gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
                gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)

                others = [
                    paddle.to_tensor(encoder_word_pos_list),
                    paddle.to_tensor(gsrm_word_pos_list),
                    paddle.to_tensor(gsrm_slf_attn_bias1_list),
                    paddle.to_tensor(gsrm_slf_attn_bias2_list)
                ]
andyjpaddle's avatar
andyjpaddle committed
111
112
113
            if config['Architecture']['algorithm'] == "SAR":
                valid_ratio = np.expand_dims(batch[-1], axis=0)
                img_metas = [paddle.to_tensor(valid_ratio)]
littletomatodonkey's avatar
littletomatodonkey committed
114
115
116
117
118

            images = np.expand_dims(batch[0], axis=0)
            images = paddle.to_tensor(images)
            if config['Architecture']['algorithm'] == "SRN":
                preds = model(images, others)
andyjpaddle's avatar
andyjpaddle committed
119
120
            elif config['Architecture']['algorithm'] == "SAR":
                preds = model(images, img_metas)
littletomatodonkey's avatar
littletomatodonkey committed
121
122
123
            else:
                preds = model(images)
            post_result = post_process_class(preds)
littletomatodonkey's avatar
littletomatodonkey committed
124
125
126
127
128
129
130
            info = None
            if isinstance(post_result, dict):
                rec_info = dict()
                for key in post_result:
                    if len(post_result[key][0]) >= 2:
                        rec_info[key] = {
                            "label": post_result[key][0][0],
131
                            "score": float(post_result[key][0][1]),
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
135
136
137
138
139
140
                        }
                info = json.dumps(rec_info)
            else:
                if len(post_result[0]) >= 2:
                    info = post_result[0][0] + "\t" + str(post_result[0][1])

            if info is not None:
                logger.info("\t result: {}".format(info))
                fout.write(file + "\t" + info)
WenmuZhou's avatar
WenmuZhou committed
141
142
    logger.info("success!")

LDOUBLEV's avatar
LDOUBLEV committed
143
144

if __name__ == '__main__':
WenmuZhou's avatar
WenmuZhou committed
145
    config, device, logger, vdl_writer = program.preprocess()
LDOUBLEV's avatar
LDOUBLEV committed
146
    main()