inference_en.md 23.8 KB
Newer Older
Khanh Tran's avatar
Khanh Tran committed
1

tink2123's avatar
tink2123 committed
2
# Reasoning based on Python prediction engine
Khanh Tran's avatar
Khanh Tran committed
3

WenmuZhou's avatar
WenmuZhou committed
4
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
Khanh Tran's avatar
Khanh Tran committed
5
6
7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

WenmuZhou's avatar
WenmuZhou committed
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
Khanh Tran's avatar
Khanh Tran committed
9

WenmuZhou's avatar
WenmuZhou committed
10
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
Khanh Tran's avatar
Khanh Tran committed
11

licx's avatar
licx committed
12
13
14
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
WenmuZhou's avatar
WenmuZhou committed
15
16
17
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


licx's avatar
licx committed
18
19
20
21
22
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
WenmuZhou's avatar
WenmuZhou committed
23
24
    - [5. Multilingual model inference](#Multilingual model inference)

licx's avatar
licx committed
25
26
27
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
WenmuZhou's avatar
WenmuZhou committed
28
29
    - [3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [4. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
WenmuZhou's avatar
WenmuZhou committed
30
31
32
33
34

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
licx's avatar
licx committed
35
36
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
WenmuZhou's avatar
WenmuZhou committed
37

licx's avatar
licx committed
38
<a name="CONVERT"></a>
xxxpsyduck's avatar
xxxpsyduck committed
39
## CONVERT TRAINING MODEL TO INFERENCE MODEL
licx's avatar
licx committed
40
<a name="Convert_detection_model"></a>
xxxpsyduck's avatar
xxxpsyduck committed
41
### Convert detection model to inference model
Khanh Tran's avatar
Khanh Tran committed
42

xxxpsyduck's avatar
xxxpsyduck committed
43
Download the lightweight Chinese detection model:
Khanh Tran's avatar
Khanh Tran committed
44
```
WenmuZhou's avatar
WenmuZhou committed
45
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
Khanh Tran's avatar
Khanh Tran committed
46
```
WenmuZhou's avatar
WenmuZhou committed
47

Khanh Tran's avatar
Khanh Tran committed
48
49
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
WenmuZhou's avatar
WenmuZhou committed
50
51
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
WenmuZhou's avatar
WenmuZhou committed
52
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
WenmuZhou's avatar
WenmuZhou committed
53
54
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
tink2123's avatar
tink2123 committed
55

WenmuZhou's avatar
WenmuZhou committed
56
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
Khanh Tran's avatar
Khanh Tran committed
57
```
WenmuZhou's avatar
WenmuZhou committed
58

WenmuZhou's avatar
WenmuZhou committed
59
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
WenmuZhou's avatar
WenmuZhou committed
60
After the conversion is successful, there are three files in the model save directory:
Khanh Tran's avatar
Khanh Tran committed
61
62
```
inference/det_db/
63
64
65
    ├── inference.pdiparams         # The parameter file of detection inference model
    ├── inference.pdiparams.info    # The parameter information of detection inference model, which can be ignored
    └── inference.pdmodel           # The program file of detection inference model
Khanh Tran's avatar
Khanh Tran committed
66
67
```

licx's avatar
licx committed
68
<a name="Convert_recognition_model"></a>
xxxpsyduck's avatar
xxxpsyduck committed
69
### Convert recognition model to inference model
Khanh Tran's avatar
Khanh Tran committed
70

xxxpsyduck's avatar
xxxpsyduck committed
71
Download the lightweight Chinese recognition model:
Khanh Tran's avatar
Khanh Tran committed
72
```
WenmuZhou's avatar
WenmuZhou committed
73
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
Khanh Tran's avatar
Khanh Tran committed
74
75
76
77
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
WenmuZhou's avatar
WenmuZhou committed
78
79
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
WenmuZhou's avatar
WenmuZhou committed
80
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
WenmuZhou's avatar
WenmuZhou committed
81
82
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
tink2123's avatar
tink2123 committed
83

WenmuZhou's avatar
WenmuZhou committed
84
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
Khanh Tran's avatar
Khanh Tran committed
85
86
87
88
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

WenmuZhou's avatar
WenmuZhou committed
89
After the conversion is successful, there are three files in the model save directory:
Khanh Tran's avatar
Khanh Tran committed
90
```
WenmuZhou's avatar
WenmuZhou committed
91
inference/det_db/
92
93
94
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
Khanh Tran's avatar
Khanh Tran committed
95
96
```

WenmuZhou's avatar
WenmuZhou committed
97
98
99
100
101
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
WenmuZhou's avatar
WenmuZhou committed
102
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
WenmuZhou's avatar
WenmuZhou committed
103
104
105
106
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
WenmuZhou's avatar
WenmuZhou committed
107
108
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
WenmuZhou's avatar
WenmuZhou committed
109
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
WenmuZhou's avatar
WenmuZhou committed
110
111
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
WenmuZhou's avatar
WenmuZhou committed
112

WenmuZhou's avatar
WenmuZhou committed
113
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
WenmuZhou's avatar
WenmuZhou committed
114
115
116
117
```

After the conversion is successful, there are two files in the directory:
```
WenmuZhou's avatar
WenmuZhou committed
118
inference/det_db/
119
120
121
    ├── inference.pdiparams         # The parameter file of angle class inference model
    ├── inference.pdiparams.info    # The parameter information of  angle class inference model, which can be ignored
    └── inference.pdmodel           # The program file of angle class model
WenmuZhou's avatar
WenmuZhou committed
122
123
124
```


licx's avatar
licx committed
125
<a name="DETECTION_MODEL_INFERENCE"></a>
xxxpsyduck's avatar
xxxpsyduck committed
126
## TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
127

tink2123's avatar
tink2123 committed
128
129
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
Khanh Tran's avatar
Khanh Tran committed
130

licx's avatar
licx committed
131
<a name="LIGHTWEIGHT_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
132
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
133

xxxpsyduck's avatar
xxxpsyduck committed
134
For lightweight Chinese detection model inference, you can execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
135
136

```
LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
140
# download DB text detection inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# predict
141
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
Khanh Tran's avatar
Khanh Tran committed
142
143
144
145
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

146
![](../imgs_results/det_res_00018069.jpg)
Khanh Tran's avatar
Khanh Tran committed
147

LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
The optional parameters of `litmit_type` are [`max`, `min`], and
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
Khanh Tran's avatar
Khanh Tran committed
151

LDOUBLEV's avatar
LDOUBLEV committed
152
153
154
155
156
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.

If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
Khanh Tran's avatar
Khanh Tran committed
157
```
LDOUBLEV's avatar
LDOUBLEV committed
158
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
Khanh Tran's avatar
Khanh Tran committed
159
160
161
162
```

If you want to use the CPU for prediction, execute the command as follows
```
LDOUBLEV's avatar
LDOUBLEV committed
163
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
Khanh Tran's avatar
Khanh Tran committed
164
165
```

licx's avatar
licx committed
166
<a name="DB_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
167
### 2. DB TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
168

WenmuZhou's avatar
WenmuZhou committed
169
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
Khanh Tran's avatar
Khanh Tran committed
170
171

```
WenmuZhou's avatar
WenmuZhou committed
172
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
Khanh Tran's avatar
Khanh Tran committed
173
174
175
176
177
178
179
180
181
182
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

183
![](../imgs_results/det_res_img_10_db.jpg)
Khanh Tran's avatar
Khanh Tran committed
184
185
186

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

licx's avatar
licx committed
187
<a name="EAST_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
188
### 3. EAST TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
189

MissPenguin's avatar
MissPenguin committed
190
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:
Khanh Tran's avatar
Khanh Tran committed
191
192

```
WenmuZhou's avatar
WenmuZhou committed
193
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
Khanh Tran's avatar
Khanh Tran committed
194
```
licx's avatar
licx committed
195
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
Khanh Tran's avatar
Khanh Tran committed
196
197
198
199

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
licx's avatar
licx committed
200

Khanh Tran's avatar
Khanh Tran committed
201
202
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

MissPenguin's avatar
MissPenguin committed
203
![](../imgs_results/det_res_img_10_east.jpg)
Khanh Tran's avatar
Khanh Tran committed
204

licx's avatar
licx committed
205
206
207
208
209
210
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
MissPenguin's avatar
MissPenguin committed
211
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
licx's avatar
licx committed
212
213

```
WenmuZhou's avatar
WenmuZhou committed
214
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
licx's avatar
licx committed
215
216
217
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
Khanh Tran's avatar
Khanh Tran committed
218

licx's avatar
licx committed
219
220
221
222
223
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
Khanh Tran's avatar
Khanh Tran committed
224

MissPenguin's avatar
MissPenguin committed
225
![](../imgs_results/det_res_img_10_sast.jpg)
licx's avatar
licx committed
226
227

#### (2). Curved text detection model (Total-Text)  
MissPenguin's avatar
MissPenguin committed
228
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)), you can use the following command to convert:
licx's avatar
licx committed
229
230

```
WenmuZhou's avatar
WenmuZhou committed
231
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
licx's avatar
licx committed
232
233
234
235
236
237
238
239
240
241
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

MissPenguin's avatar
MissPenguin committed
242
![](../imgs_results/det_res_img623_sast.jpg)
licx's avatar
licx committed
243
244
245
246

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
xxxpsyduck's avatar
xxxpsyduck committed
247
## TEXT RECOGNITION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
248

xxxpsyduck's avatar
xxxpsyduck committed
249
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
Khanh Tran's avatar
Khanh Tran committed
250
251


licx's avatar
licx committed
252
<a name="LIGHTWEIGHT_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
253
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
Khanh Tran's avatar
Khanh Tran committed
254

xxxpsyduck's avatar
xxxpsyduck committed
255
For lightweight Chinese recognition model inference, you can execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
256
257

```
WenmuZhou's avatar
WenmuZhou committed
258
259
260
261
# download CRNN text recognition inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
Khanh Tran's avatar
Khanh Tran committed
262
263
```

WenmuZhou's avatar
WenmuZhou committed
264
![](../imgs_words_en/word_10.png)
Khanh Tran's avatar
Khanh Tran committed
265
266
267

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

WenmuZhou's avatar
WenmuZhou committed
268
```bash
WenmuZhou's avatar
WenmuZhou committed
269
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
WenmuZhou's avatar
WenmuZhou committed
270
```
Khanh Tran's avatar
Khanh Tran committed
271

licx's avatar
licx committed
272
<a name="CTC-BASED_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
273
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
274

WenmuZhou's avatar
WenmuZhou committed
275
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
Khanh Tran's avatar
Khanh Tran committed
276

WenmuZhou's avatar
WenmuZhou committed
277
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
Khanh Tran's avatar
Khanh Tran committed
278
279

```
WenmuZhou's avatar
WenmuZhou committed
280
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
Khanh Tran's avatar
Khanh Tran committed
281
282
```

WenmuZhou's avatar
WenmuZhou committed
283
For CRNN text recognition model inference, execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
284
285
286
287

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
xxxpsyduck's avatar
xxxpsyduck committed
288

WenmuZhou's avatar
WenmuZhou committed
289
![](../imgs_words_en/word_336.png)
Khanh Tran's avatar
Khanh Tran committed
290

WenmuZhou's avatar
WenmuZhou committed
291
292
293
294
295
After executing the command, the recognition result of the above image is as follows:

```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
xxxpsyduck's avatar
xxxpsyduck committed
296
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
Khanh Tran's avatar
Khanh Tran committed
297
298
299
300
301
302
303
304
305
306

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

licx's avatar
licx committed
307
<a name="USING_CUSTOM_CHARACTERS"></a>
WenmuZhou's avatar
WenmuZhou committed
308
### 3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
WenmuZhou's avatar
WenmuZhou committed
309
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
LDOUBLEV's avatar
LDOUBLEV committed
310
311

```
WenmuZhou's avatar
WenmuZhou committed
312
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
LDOUBLEV's avatar
LDOUBLEV committed
313
314
```

WenmuZhou's avatar
WenmuZhou committed
315
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
WenmuZhou's avatar
WenmuZhou committed
316
### 4. MULTILINGAUL MODEL INFERENCE
WenmuZhou's avatar
WenmuZhou committed
317
318
319
320
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition:

```
tink2123's avatar
tink2123 committed
321
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
WenmuZhou's avatar
WenmuZhou committed
322
323
324
325
326
327
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
WenmuZhou's avatar
WenmuZhou committed
328
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
WenmuZhou's avatar
WenmuZhou committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
WenmuZhou's avatar
WenmuZhou committed
343
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
WenmuZhou's avatar
WenmuZhou committed
344
```
WenmuZhou's avatar
WenmuZhou committed
345
346
347
348
349
350
```
# download text angle class inference model:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
WenmuZhou's avatar
WenmuZhou committed
351
![](../imgs_words_en/word_10.png)
WenmuZhou's avatar
WenmuZhou committed
352
353
354

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

WenmuZhou's avatar
WenmuZhou committed
355
```
WenmuZhou's avatar
WenmuZhou committed
356
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
WenmuZhou's avatar
WenmuZhou committed
357
```
WenmuZhou's avatar
WenmuZhou committed
358

licx's avatar
licx committed
359
<a name="CONCATENATION"></a>
WenmuZhou's avatar
WenmuZhou committed
360
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
Khanh Tran's avatar
Khanh Tran committed
361

licx's avatar
licx committed
362
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
xxxpsyduck's avatar
xxxpsyduck committed
363
### 1. LIGHTWEIGHT CHINESE MODEL
Khanh Tran's avatar
Khanh Tran committed
364

WenmuZhou's avatar
WenmuZhou committed
365
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
Khanh Tran's avatar
Khanh Tran committed
366
367

```
WenmuZhou's avatar
WenmuZhou committed
368
369
370
371
372
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
Khanh Tran's avatar
Khanh Tran committed
373
374
375
376
```

After executing the command, the recognition result image is as follows:

377
![](../imgs_results/2.jpg)
Khanh Tran's avatar
Khanh Tran committed
378

licx's avatar
licx committed
379
<a name="OTHER_MODELS"></a>
xxxpsyduck's avatar
xxxpsyduck committed
380
### 2. OTHER MODELS
Khanh Tran's avatar
Khanh Tran committed
381

licx's avatar
licx committed
382
383
384
385
386
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
Khanh Tran's avatar
Khanh Tran committed
387
388
389
390
391
392
393

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

WenmuZhou's avatar
WenmuZhou committed
394
(coming soon)