inference_en.md 23.8 KB
Newer Older
Khanh Tran's avatar
Khanh Tran committed
1

tink2123's avatar
tink2123 committed
2
# Reasoning based on Python prediction engine
Khanh Tran's avatar
Khanh Tran committed
3

licx's avatar
licx committed
4
The inference model (the model saved by `fluid.io.save_inference_model`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
Khanh Tran's avatar
Khanh Tran committed
5
6
7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

WenmuZhou's avatar
WenmuZhou committed
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
Khanh Tran's avatar
Khanh Tran committed
9
10
11

Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, and the concatenation of them based on inference model.

licx's avatar
licx committed
12
13
14
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
WenmuZhou's avatar
WenmuZhou committed
15
16
17
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


licx's avatar
licx committed
18
19
20
21
22
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
WenmuZhou's avatar
WenmuZhou committed
23
24
    - [5. Multilingual model inference](#Multilingual model inference)

licx's avatar
licx committed
25
26
27
28
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
    - [3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE](#ATTENTION-BASED_RECOGNITION)
WenmuZhou's avatar
WenmuZhou committed
29
30
31
32
33
34
35
36
    - [4. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION)
    - [5. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [6. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
licx's avatar
licx committed
37
38
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
WenmuZhou's avatar
WenmuZhou committed
39

licx's avatar
licx committed
40
<a name="CONVERT"></a>
xxxpsyduck's avatar
xxxpsyduck committed
41
## CONVERT TRAINING MODEL TO INFERENCE MODEL
licx's avatar
licx committed
42
<a name="Convert_detection_model"></a>
xxxpsyduck's avatar
xxxpsyduck committed
43
### Convert detection model to inference model
Khanh Tran's avatar
Khanh Tran committed
44

xxxpsyduck's avatar
xxxpsyduck committed
45
Download the lightweight Chinese detection model:
Khanh Tran's avatar
Khanh Tran committed
46
```
WenmuZhou's avatar
WenmuZhou committed
47
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_det_train.tar -C ./ch_lite/
Khanh Tran's avatar
Khanh Tran committed
48
```
WenmuZhou's avatar
WenmuZhou committed
49

Khanh Tran's avatar
Khanh Tran committed
50
51
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
tink2123's avatar
tink2123 committed
52
53
54
55
56
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
#  Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
#  Global.save_inference_dir Set the address where the converted model will be saved.

WenmuZhou's avatar
WenmuZhou committed
57
python3 tools/export_model.py -c configs/det/det_mv3_db_v1.1.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_det_train/best_accuracy Global.save_inference_dir=./inference/det_db/
Khanh Tran's avatar
Khanh Tran committed
58
```
WenmuZhou's avatar
WenmuZhou committed
59

Khanh Tran's avatar
Khanh Tran committed
60
61
62
63
64
65
66
67
68
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.checkpoints` and `Global.save_inference_dir` parameters in the configuration file.
`Global.checkpoints` points to the model parameter file saved during training, and `Global.save_inference_dir` is the directory where the generated inference model is saved.
After the conversion is successful, there are two files in the `save_inference_dir` directory:
```
inference/det_db/
  └─  model     Check the program file of inference model
  └─  params    Check the parameter file of the inference model
```

licx's avatar
licx committed
69
<a name="Convert_recognition_model"></a>
xxxpsyduck's avatar
xxxpsyduck committed
70
### Convert recognition model to inference model
Khanh Tran's avatar
Khanh Tran committed
71

xxxpsyduck's avatar
xxxpsyduck committed
72
Download the lightweight Chinese recognition model:
Khanh Tran's avatar
Khanh Tran committed
73
```
WenmuZhou's avatar
WenmuZhou committed
74
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar && tar xf ch_ppocr_mobile_v1.1_rec_train.tar -C ./ch_lite/
Khanh Tran's avatar
Khanh Tran committed
75
76
77
78
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
tink2123's avatar
tink2123 committed
79
80
81
82
83
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
#  Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
#  Global.save_inference_dir Set the address where the converted model will be saved.

WenmuZhou's avatar
WenmuZhou committed
84
python3 tools/export_model.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_rec_train/best_accuracy \
Khanh Tran's avatar
Khanh Tran committed
85
86
87
88
89
90
91
92
93
94
95
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are two files in the directory:
```
/inference/rec_crnn/
  └─  model     Identify the saved model files
  └─  params    Identify the parameter files of the inference model
```

WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_cls_train.tar -C ./ch_lite/
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
#  Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
#  Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_cls_train/best_accuracy \
        Global.save_inference_dir=./inference/cls/
```

After the conversion is successful, there are two files in the directory:
```
/inference/cls/
  └─  model     Identify the saved model files
  └─  params    Identify the parameter files of the inference model
```


licx's avatar
licx committed
123
<a name="DETECTION_MODEL_INFERENCE"></a>
xxxpsyduck's avatar
xxxpsyduck committed
124
## TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
125

tink2123's avatar
tink2123 committed
126
127
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
Khanh Tran's avatar
Khanh Tran committed
128

licx's avatar
licx committed
129
<a name="LIGHTWEIGHT_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
130
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
131

xxxpsyduck's avatar
xxxpsyduck committed
132
For lightweight Chinese detection model inference, you can execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
133
134
135
136
137
138
139

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

140
![](../imgs_results/det_res_2.jpg)
Khanh Tran's avatar
Khanh Tran committed
141
142
143
144
145
146
147
148
149
150
151
152

By setting the size of the parameter `det_max_side_len`, the maximum value of picture normalization in the detection algorithm is changed. When the length and width of the picture are less than det_max_side_len, the original picture is used for prediction, otherwise the picture is scaled to the maximum value for prediction. This parameter is set to det_max_side_len=960 by default. If the resolution of the input picture is relatively large and you want to use a larger resolution for prediction, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_max_side_len=1200
```

If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```

licx's avatar
licx committed
153
<a name="DB_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
154
### 2. DB TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)), you can use the following command to convert:

```
# Set the yml configuration file of the training algorithm after -c
# The Global.checkpoints parameter sets the address of the training model to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# The Global.save_inference_dir parameter sets the address where the converted model will be saved.

python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints="./models/det_r50_vd_db/best_accuracy" Global.save_inference_dir="./inference/det_db"
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

174
![](../imgs_results/det_res_img_10_db.jpg)
Khanh Tran's avatar
Khanh Tran committed
175
176
177

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

licx's avatar
licx committed
178
<a name="EAST_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
179
### 3. EAST TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
180
181
182
183
184
185
186
187
188
189
190

First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)), you can use the following command to convert:

```
# Set the yml configuration file of the training algorithm after -c
# The Global.checkpoints parameter sets the address of the training model to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# The Global.save_inference_dir parameter sets the address where the converted model will be saved.

python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.checkpoints="./models/det_r50_vd_east/best_accuracy" Global.save_inference_dir="./inference/det_east"
```

licx's avatar
licx committed
191
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
Khanh Tran's avatar
Khanh Tran committed
192
193
194
195

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
licx's avatar
licx committed
196

Khanh Tran's avatar
Khanh Tran committed
197
198
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

199
![](../imgs_results/det_res_img_10_east.jpg)
Khanh Tran's avatar
Khanh Tran committed
200

licx's avatar
licx committed
201
202
203
204
205
206
207
208
209
210
211
212
213
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)), you can use the following command to convert:

```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.checkpoints="./models/sast_r50_vd_icdar2015/best_accuracy" Global.save_inference_dir="./inference/det_sast_ic15"
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
Khanh Tran's avatar
Khanh Tran committed
214

licx's avatar
licx committed
215
216
217
218
219
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
Khanh Tran's avatar
Khanh Tran committed
220

licx's avatar
licx committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
![](../imgs_results/det_res_img_10_sast.jpg)

#### (2). Curved text detection model (Total-Text)  
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:

```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.checkpoints="./models/sast_r50_vd_total_text/best_accuracy" Global.save_inference_dir="./inference/det_sast_tt"
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

MissPenguin's avatar
MissPenguin committed
238
![](../imgs_results/det_res_img623_sast.jpg)
licx's avatar
licx committed
239
240
241
242

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
xxxpsyduck's avatar
xxxpsyduck committed
243
## TEXT RECOGNITION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
244

xxxpsyduck's avatar
xxxpsyduck committed
245
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
Khanh Tran's avatar
Khanh Tran committed
246
247


licx's avatar
licx committed
248
<a name="LIGHTWEIGHT_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
249
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
Khanh Tran's avatar
Khanh Tran committed
250

xxxpsyduck's avatar
xxxpsyduck committed
251
For lightweight Chinese recognition model inference, you can execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
252
253
254
255
256

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
```

257
![](../imgs_words/ch/word_4.jpg)
Khanh Tran's avatar
Khanh Tran committed
258
259
260
261
262
263

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]


licx's avatar
licx committed
264
<a name="CTC-BASED_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
265
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Taking STAR-Net as an example, we introduce the recognition model inference based on CTC loss. CRNN and Rosetta are used in a similar way, by setting the recognition algorithm parameter `rec_algorithm`.

First, convert the model saved in the STAR-Net text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)). It can be converted as follow:

```
# Set the yml configuration file of the training algorithm after -c
# The Global.checkpoints parameter sets the address of the training model to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# The Global.save_inference_dir parameter sets the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.checkpoints="./models/rec_r34_vd_tps_bilstm_ctc/best_accuracy" Global.save_inference_dir="./inference/starnet"
```

For STAR-Net text recognition model inference, execute the following commands:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
xxxpsyduck's avatar
xxxpsyduck committed
284

licx's avatar
licx committed
285
<a name="ATTENTION-BASED_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
286
### 3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE
287
![](../imgs_words_en/word_336.png)
Khanh Tran's avatar
Khanh Tran committed
288
289
290
291
292

After executing the command, the recognition result of the above image is as follows:

Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]

xxxpsyduck's avatar
xxxpsyduck committed
293
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
Khanh Tran's avatar
Khanh Tran committed
294
295
296
297
298
299
300
301
302
303

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

WenmuZhou's avatar
WenmuZhou committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
<a name="SRN-BASED_RECOGNITION"></a>
### 4. SRN-BASED TEXT RECOGNITION MODEL INFERENCE

The recognition model based on SRN requires additional setting of the recognition algorithm parameter --rec_algorithm="SRN".
At the same time, it is necessary to ensure that the predicted shape is consistent with the training, such as: --rec_image_shape="1, 64, 256"

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
                                    --rec_model_dir="./inference/srn/" \
                                    --rec_image_shape="1, 64, 256" \
                                    --rec_char_type="en" \
                                    --rec_algorithm="SRN"
```


licx's avatar
licx committed
319
<a name="USING_CUSTOM_CHARACTERS"></a>
WenmuZhou's avatar
WenmuZhou committed
320
### 5. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
xxxpsyduck's avatar
xxxpsyduck committed
321
If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict.
LDOUBLEV's avatar
LDOUBLEV committed
322
323
324
325
326

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
```

WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
### 6. MULTILINGAUL MODEL INFERENCE
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/korean.ttf"
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
2020-09-19 16:15:05,076-INFO:      index: [205 206  38  39]
2020-09-19 16:15:05,077-INFO:      word : 바탕으로
2020-09-19 16:15:05,077-INFO:      score: 0.9171358942985535
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="./inference/cls/"
```

![](../imgs_words/ch/word_4.jpg)

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999963]


licx's avatar
licx committed
367
<a name="CONCATENATION"></a>
WenmuZhou's avatar
WenmuZhou committed
368
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
Khanh Tran's avatar
Khanh Tran committed
369

licx's avatar
licx committed
370
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
xxxpsyduck's avatar
xxxpsyduck committed
371
### 1. LIGHTWEIGHT CHINESE MODEL
Khanh Tran's avatar
Khanh Tran committed
372

WenmuZhou's avatar
WenmuZhou committed
373
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
Khanh Tran's avatar
Khanh Tran committed
374
375

```
WenmuZhou's avatar
WenmuZhou committed
376
377
378
379
380
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
Khanh Tran's avatar
Khanh Tran committed
381
382
383
384
```

After executing the command, the recognition result image is as follows:

385
![](../imgs_results/2.jpg)
Khanh Tran's avatar
Khanh Tran committed
386

licx's avatar
licx committed
387
<a name="OTHER_MODELS"></a>
xxxpsyduck's avatar
xxxpsyduck committed
388
### 2. OTHER MODELS
Khanh Tran's avatar
Khanh Tran committed
389

licx's avatar
licx committed
390
391
392
393
394
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
Khanh Tran's avatar
Khanh Tran committed
395
396
397
398
399
400
401

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

402
![](../imgs_results/img_10.jpg)