"test/srt/vscode:/vscode.git/clone" did not exist on "20bd2271e2d527417b53bc03b31a5aa1d51eedac"
README.md 9.24 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
- [文档视觉问答(DOC-VQA)](#文档视觉问答doc-vqa)
  - [1. 简介](#1-简介)
  - [2. 性能](#2-性能)
  - [3. 效果演示](#3-效果演示)
    - [3.1 SER](#31-ser)
    - [3.2 RE](#32-re)
  - [4. 安装](#4-安装)
    - [4.1 安装依赖](#41-安装依赖)
    - [4.2 安装PaddleOCR(包含 PP-OCR 和 VQA)](#42-安装paddleocr包含-pp-ocr-和-vqa)
  - [5. 使用](#5-使用)
    - [5.1 数据和预训练模型准备](#51-数据和预训练模型准备)
    - [5.2 SER](#52-ser)
    - [5.3 RE](#53-re)
  - [6. 参考链接](#6-参考链接)


WenmuZhou's avatar
add re  
WenmuZhou committed
17
# 文档视觉问答(DOC-VQA)
littletomatodonkey's avatar
littletomatodonkey committed
18

WenmuZhou's avatar
WenmuZhou committed
19
20
## 1. 简介

WenmuZhou's avatar
WenmuZhou committed
21
VQA指视觉问答,主要针对图像内容进行提问和回答,DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
WenmuZhou's avatar
add re  
WenmuZhou committed
22
23
24
25

PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进行开发。

主要特性如下:
littletomatodonkey's avatar
littletomatodonkey committed
26
27

- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
WenmuZhou's avatar
WenmuZhou committed
28
29
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练。
WenmuZhou's avatar
add re  
WenmuZhou committed
30
31
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
littletomatodonkey's avatar
littletomatodonkey committed
32
33
34
35
36


本项目是 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) 在 Paddle 2.2上的开源实现,
包含了在 [XFUND数据集](https://github.com/doc-analysis/XFUND) 上的微调代码。

WenmuZhou's avatar
WenmuZhou committed
37
## 2. 性能
WenmuZhou's avatar
add re  
WenmuZhou committed
38

WenmuZhou's avatar
WenmuZhou committed
39
我们在 [XFUN](https://github.com/doc-analysis/XFUND) 的中文数据集上对算法进行了评估,性能如下
WenmuZhou's avatar
add re  
WenmuZhou committed
40

41
| 模型 | 任务 | hmean | 模型下载地址 |
WenmuZhou's avatar
WenmuZhou committed
42
|:---:|:---:|:---:| :---:|
43
| LayoutXLM | SER | 0.9038 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
WenmuZhou's avatar
WenmuZhou committed
44
45
| LayoutXLM | RE | 0.7483 | [链接](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
| LayoutLMv2 | SER | 0.8544 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar)
WenmuZhou's avatar
WenmuZhou committed
46
| LayoutLMv2 | RE | 0.6777 | [链接](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
47
| LayoutLM | SER | 0.7731 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
WenmuZhou's avatar
add re  
WenmuZhou committed
48

WenmuZhou's avatar
WenmuZhou committed
49
## 3. 效果演示
littletomatodonkey's avatar
littletomatodonkey committed
50
51
52

**注意:** 测试图片来源于XFUN数据集。

WenmuZhou's avatar
WenmuZhou committed
53
### 3.1 SER
littletomatodonkey's avatar
littletomatodonkey committed
54

WenmuZhou's avatar
WenmuZhou committed
55
![](../../doc/vqa/result_ser/zh_val_0_ser.jpg) | ![](../../doc/vqa/result_ser/zh_val_42_ser.jpg)
WenmuZhou's avatar
add re  
WenmuZhou committed
56
---|---
littletomatodonkey's avatar
littletomatodonkey committed
57

WenmuZhou's avatar
add re  
WenmuZhou committed
58
图中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别
littletomatodonkey's avatar
littletomatodonkey committed
59

WenmuZhou's avatar
add re  
WenmuZhou committed
60
61
62
* 深紫色:HEADER
* 浅紫色:QUESTION
* 军绿色:ANSWER
littletomatodonkey's avatar
littletomatodonkey committed
63

WenmuZhou's avatar
add re  
WenmuZhou committed
64
在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey committed
65

WenmuZhou's avatar
WenmuZhou committed
66
### 3.2 RE
littletomatodonkey's avatar
littletomatodonkey committed
67

WenmuZhou's avatar
WenmuZhou committed
68
![](../../doc/vqa/result_re/zh_val_21_re.jpg) | ![](../../doc/vqa/result_re/zh_val_40_re.jpg)
WenmuZhou's avatar
add re  
WenmuZhou committed
69
---|---
littletomatodonkey's avatar
littletomatodonkey committed
70
71


WenmuZhou's avatar
add re  
WenmuZhou committed
72
图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey committed
73

WenmuZhou's avatar
WenmuZhou committed
74
## 4. 安装
WenmuZhou's avatar
add re  
WenmuZhou committed
75

WenmuZhou's avatar
WenmuZhou committed
76
### 4.1 安装依赖
littletomatodonkey's avatar
littletomatodonkey committed
77
78
79
80

- **(1) 安装PaddlePaddle**

```bash
WenmuZhou's avatar
WenmuZhou committed
81
python3 -m pip install --upgrade pip
littletomatodonkey's avatar
littletomatodonkey committed
82
83

# GPU安装
84
python3 -m pip install "paddlepaddle-gpu>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey committed
85
86

# CPU安装
87
python3 -m pip install "paddlepaddle>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey committed
88
89
90
91

```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。

WenmuZhou's avatar
WenmuZhou committed
92
### 4.2 安装PaddleOCR(包含 PP-OCR 和 VQA)
littletomatodonkey's avatar
littletomatodonkey committed
93
94
95
96

- **(1)pip快速安装PaddleOCR whl包(仅预测)**

```bash
97
python3 -m pip install paddleocr
littletomatodonkey's avatar
littletomatodonkey committed
98
99
```

littletomatodonkey's avatar
littletomatodonkey committed
100
- **(2)下载VQA源码(预测+训练)**
littletomatodonkey's avatar
littletomatodonkey committed
101
102
103
104
105
106
107
108
109
110

```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR

# 如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR

# 注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```

111
- **(3)安装VQA的`requirements`**
littletomatodonkey's avatar
littletomatodonkey committed
112
113

```bash
114
python3 -m pip install -r ppstructure/vqa/requirements.txt
littletomatodonkey's avatar
littletomatodonkey committed
115
116
```

WenmuZhou's avatar
WenmuZhou committed
117
## 5. 使用
littletomatodonkey's avatar
littletomatodonkey committed
118

WenmuZhou's avatar
WenmuZhou committed
119
### 5.1 数据和预训练模型准备
littletomatodonkey's avatar
littletomatodonkey committed
120

121
122
123
124
如果希望直接体验预测过程,可以下载我们提供的预训练模型,跳过训练过程,直接预测即可。

* 下载处理好的数据集

littletomatodonkey's avatar
littletomatodonkey committed
125
126
127
128
129
130
131
132
133
处理好的XFUN中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)


下载并解压该数据集,解压后将数据集放置在当前目录下。

```shell
wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
```

134
* 转换数据集
littletomatodonkey's avatar
littletomatodonkey committed
135

136
若需进行其他XFUN数据集的训练,可使用下面的命令进行数据集的转换
littletomatodonkey's avatar
littletomatodonkey committed
137

138
139
140
```bash
python3 ppstructure/vqa/helper/trans_xfun_data.py --ori_gt_path=path/to/json_path --output_path=path/to/save_path
```
littletomatodonkey's avatar
littletomatodonkey committed
141

WenmuZhou's avatar
WenmuZhou committed
142
### 5.2 SER
littletomatodonkey's avatar
littletomatodonkey committed
143

144
145
146
147
148
149
启动训练之前,需要修改下面的四个字段

1. `Train.dataset.data_dir`:指向训练集图片存放目录
2. `Train.dataset.label_file_list`:指向训练集标注文件
3. `Eval.dataset.data_dir`:指指向验证集图片存放目录
4. `Eval.dataset.label_file_list`:指向验证集标注文件
littletomatodonkey's avatar
littletomatodonkey committed
150

151
* 启动训练
littletomatodonkey's avatar
littletomatodonkey committed
152
```shell
153
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml
littletomatodonkey's avatar
littletomatodonkey committed
154
155
```

156
157
最终会打印出`precision`, `recall`, `hmean`等指标。
`./output/ser_layoutxlm/`文件夹中会保存训练日志,最优的模型和最新epoch的模型。
littletomatodonkey's avatar
littletomatodonkey committed
158

zhoujun's avatar
zhoujun committed
159
160
* 恢复训练

161
162
恢复训练需要将之前训练好的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。

zhoujun's avatar
zhoujun committed
163
```shell
164
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
zhoujun's avatar
zhoujun committed
165
166
167
168
```

* 评估

169
评估需要将待评估的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
littletomatodonkey's avatar
littletomatodonkey committed
170
171

```shell
172
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
littletomatodonkey's avatar
littletomatodonkey committed
173
```
174
最终会打印出`precision`, `recall`, `hmean`等指标
littletomatodonkey's avatar
littletomatodonkey committed
175

176
* 使用`OCR引擎 + SER`串联预测
littletomatodonkey's avatar
littletomatodonkey committed
177

178
使用如下命令即可完成`OCR引擎 + SER`的串联预测
littletomatodonkey's avatar
littletomatodonkey committed
179
180

```shell
WenmuZhou's avatar
WenmuZhou committed
181
CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml  -o Architecture.Backbone.checkpoints=ser_LayoutXLM_xfun_zh/ Global.infer_img=doc/vqa/input/zh_val_42.jpg
littletomatodonkey's avatar
littletomatodonkey committed
182
183
```

184
185
最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`

littletomatodonkey's avatar
littletomatodonkey committed
186
187
*`OCR引擎 + SER`预测系统进行端到端评估

188
189
首先使用 `tools/infer_vqa_token_ser.py` 脚本完成数据集的预测,然后使用下面的命令进行评估。

littletomatodonkey's avatar
littletomatodonkey committed
190
191
```shell
export CUDA_VISIBLE_DEVICES=0
WenmuZhou's avatar
WenmuZhou committed
192
python3 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json  --pred_json_path output_res/infer_results.txt
littletomatodonkey's avatar
littletomatodonkey committed
193
194
```

WenmuZhou's avatar
WenmuZhou committed
195
### 5.3 RE
littletomatodonkey's avatar
littletomatodonkey committed
196

WenmuZhou's avatar
add re  
WenmuZhou committed
197
* 启动训练
littletomatodonkey's avatar
littletomatodonkey committed
198

199
启动训练之前,需要修改下面的四个字段
WenmuZhou's avatar
add re  
WenmuZhou committed
200

201
202
203
204
1. `Train.dataset.data_dir`:指向训练集图片存放目录
2. `Train.dataset.label_file_list`:指向训练集标注文件
3. `Eval.dataset.data_dir`:指指向验证集图片存放目录
4. `Eval.dataset.label_file_list`:指向验证集标注文件
zhoujun's avatar
zhoujun committed
205
206

```shell
207
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml
zhoujun's avatar
zhoujun committed
208
209
```

210
211
212
213
214
215
最终会打印出`precision`, `recall`, `hmean`等指标。
`./output/re_layoutxlm/`文件夹中会保存训练日志,最优的模型和最新epoch的模型。

* 恢复训练

恢复训练需要将之前训练好的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
WenmuZhou's avatar
add re  
WenmuZhou committed
216

zhoujun's avatar
zhoujun committed
217
```shell
218
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
zhoujun's avatar
zhoujun committed
219
220
```

221
* 评估
zhoujun's avatar
zhoujun committed
222

223
评估需要将待评估的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
WenmuZhou's avatar
add re  
WenmuZhou committed
224
225

```shell
226
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
WenmuZhou's avatar
add re  
WenmuZhou committed
227
```
228
最终会打印出`precision`, `recall`, `hmean`等指标
WenmuZhou's avatar
add re  
WenmuZhou committed
229

230
* 使用`OCR引擎 + SER + RE`串联预测
WenmuZhou's avatar
add re  
WenmuZhou committed
231

232
使用如下命令即可完成`OCR引擎 + SER + RE`的串联预测
WenmuZhou's avatar
add re  
WenmuZhou committed
233
234
```shell
export CUDA_VISIBLE_DEVICES=0
WenmuZhou's avatar
WenmuZhou committed
235
python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=re_LayoutXLM_xfun_zh/ Global.infer_img=doc/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm.yml -o_ser Architecture.Backbone.checkpoints=ser_LayoutXLM_xfun_zh/
WenmuZhou's avatar
add re  
WenmuZhou committed
236
```
littletomatodonkey's avatar
littletomatodonkey committed
237

238
239
最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`

WenmuZhou's avatar
WenmuZhou committed
240
## 6. 参考链接
littletomatodonkey's avatar
littletomatodonkey committed
241
242
243
244

- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND
MissPenguin's avatar
MissPenguin committed
245
246
247
248

## License

The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)