dataset_traversal.py 9.92 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
tink2123's avatar
tink2123 committed
16
import sys
LDOUBLEV's avatar
LDOUBLEV committed
17
18
19
20
21
22
23
24
25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
tink2123's avatar
tink2123 committed
26
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
44
        self.drop_last = False
tink2123's avatar
tink2123 committed
45
        self.use_tps = False
tink2123's avatar
tink2123 committed
46
        if "tps" in params:
tink2123's avatar
tink2123 committed
47
            self.ues_tps = True
LDOUBLEV's avatar
LDOUBLEV committed
48
49
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
50
            self.drop_last = True
tink2123's avatar
tink2123 committed
51
        else:
LDOUBLEV's avatar
LDOUBLEV committed
52
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
53
            self.drop_last = False
tink2123's avatar
tink2123 committed
54
55
        self.infer_img = params['infer_img']

LDOUBLEV's avatar
LDOUBLEV committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
108
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
109
110
111
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
112
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
113
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
114
115
116
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
117
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
118
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
119
                        infer_mode=True)
tink2123's avatar
tink2123 committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
tink2123's avatar
tink2123 committed
139
140
141
142
143
144
145
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
                                max_text_length=self.max_text_length)
tink2123's avatar
tink2123 committed
146
147
148
149
150
151
152
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
tink2123's avatar
tink2123 committed
153

LDOUBLEV's avatar
LDOUBLEV committed
154
155
156
157
158
159
160
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
161
162
163
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
164

tink2123's avatar
tink2123 committed
165
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
166
167
            return batch_iter_reader
        return sample_iter_reader
LDOUBLEV's avatar
LDOUBLEV committed
168
169
170
171
172
173
174
175


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
tink2123's avatar
tink2123 committed
176
177
178
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
182
183
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
184
        self.infer_img = params['infer_img']
tink2123's avatar
tink2123 committed
185
        self.use_tps = False
tink2123's avatar
tink2123 committed
186
        if "tps" in params:
tink2123's avatar
tink2123 committed
187
            self.use_tps = True
LDOUBLEV's avatar
LDOUBLEV committed
188
189
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
190
            self.drop_last = True
LDOUBLEV's avatar
LDOUBLEV committed
191
        else:
tink2123's avatar
tink2123 committed
192
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
193
            self.drop_last = False
LDOUBLEV's avatar
LDOUBLEV committed
194
195
196
197
198
199

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
200
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
201
                image_file_list = get_image_file_list(self.infer_img)
tink2123's avatar
tink2123 committed
202
203
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
204
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
205
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
206
207
208
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
209
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
210
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
211
                        infer_mode=True)
tink2123's avatar
tink2123 committed
212
                    yield norm_img
tink2123's avatar
tink2123 committed
213
214
215
216
217
218
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
tink2123's avatar
tink2123 committed
219
                if sys.platform == "win32":
tink2123's avatar
tink2123 committed
220
221
222
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
tink2123's avatar
tink2123 committed
223
224
225
226
227
228
229
230
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
tink2123's avatar
tink2123 committed
231
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
232
233
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

tink2123's avatar
tink2123 committed
234
235
236
237
238
239
240
                    label = substr[1]
                    outs = process_image(img, self.image_shape, label,
                                         self.char_ops, self.loss_type,
                                         self.max_text_length)
                    if outs is None:
                        continue
                    yield outs
LDOUBLEV's avatar
LDOUBLEV committed
241
242
243
244
245
246
247
248

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
249
250
251
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
252

tink2123's avatar
tink2123 committed
253
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
254
255
            return batch_iter_reader
        return sample_iter_reader