predict_det.py 10.7 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

23
24
25
26
27
import cv2
import numpy as np
import time
import sys

LDOUBLEV's avatar
LDOUBLEV committed
28
import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
29
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
30
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
LDOUBLEV's avatar
LDOUBLEV committed
33
import json
WenmuZhou's avatar
WenmuZhou committed
34
35
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
36
37
38

class TextDetector(object):
    def __init__(self, args):
LDOUBLEV's avatar
LDOUBLEV committed
39
        self.args = args
LDOUBLEV's avatar
LDOUBLEV committed
40
        self.det_algorithm = args.det_algorithm
MissPenguin's avatar
MissPenguin committed
41
        pre_process_list = [{
42
43
            'DetResizeForTest': {
                'limit_side_len': args.det_limit_side_len,
WenmuZhou's avatar
WenmuZhou committed
44
                'limit_type': args.det_limit_type,
45
            }
MissPenguin's avatar
MissPenguin committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
LDOUBLEV's avatar
LDOUBLEV committed
60
61
        postprocess_params = {}
        if self.det_algorithm == "DB":
WenmuZhou's avatar
WenmuZhou committed
62
            postprocess_params['name'] = 'DBPostProcess'
LDOUBLEV's avatar
LDOUBLEV committed
63
64
65
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
66
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
67
            postprocess_params["use_dilation"] = args.use_dilation
littletomatodonkey's avatar
littletomatodonkey committed
68
            postprocess_params["score_mode"] = args.det_db_score_mode
MissPenguin's avatar
MissPenguin committed
69
        elif self.det_algorithm == "EAST":
WenmuZhou's avatar
WenmuZhou committed
70
            postprocess_params['name'] = 'EASTPostProcess'
MissPenguin's avatar
MissPenguin committed
71
72
73
74
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
        elif self.det_algorithm == "SAST":
MissPenguin's avatar
MissPenguin committed
75
            pre_process_list[0] = {
WenmuZhou's avatar
WenmuZhou committed
76
77
78
                'DetResizeForTest': {
                    'resize_long': args.det_limit_side_len
                }
MissPenguin's avatar
MissPenguin committed
79
            }
WenmuZhou's avatar
WenmuZhou committed
80
            postprocess_params['name'] = 'SASTPostProcess'
MissPenguin's avatar
MissPenguin committed
81
82
83
84
85
86
87
88
89
90
91
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
96
97
98
99
        elif self.det_algorithm == "PSE":
            postprocess_params['name'] = 'PSEPostProcess'
            postprocess_params["thresh"] = args.det_pse_thresh
            postprocess_params["box_thresh"] = args.det_pse_box_thresh
            postprocess_params["min_area"] = args.det_pse_min_area
            postprocess_params["box_type"] = args.det_pse_box_type
            postprocess_params["scale"] = args.det_pse_scale
            self.det_pse_box_type = args.det_pse_box_type
LDOUBLEV's avatar
LDOUBLEV committed
100
101
102
103
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
104
105
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
        self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
            args, 'det', logger)

Double_V's avatar
Double_V committed
109
        if args.benchmark:
Double_V's avatar
Double_V committed
110
            import auto_log
Double_V's avatar
Double_V committed
111
            pid = os.getpid()
LDOUBLEV's avatar
LDOUBLEV committed
112
            gpu_id = utility.get_infer_gpuid()
Double_V's avatar
Double_V committed
113
114
115
116
117
            self.autolog = auto_log.AutoLogger(
                model_name="det",
                model_precision=args.precision,
                batch_size=1,
                data_shape="dynamic",
LDOUBLEV's avatar
LDOUBLEV committed
118
                save_path=None,
Double_V's avatar
Double_V committed
119
120
121
                inference_config=self.config,
                pids=pid,
                process_name=None,
122
                gpu_ids=gpu_id if args.use_gpu else None,
Double_V's avatar
Double_V committed
123
124
125
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
126
                warmup=2,
LDOUBLEV's avatar
LDOUBLEV committed
127
                logger=logger)
LDOUBLEV's avatar
LDOUBLEV committed
128

LDOUBLEV's avatar
LDOUBLEV committed
129
    def order_points_clockwise(self, pts):
130
131
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
132
        # sort the points based on their x-coordinates
133
        """
LDOUBLEV's avatar
LDOUBLEV committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
153
    def clip_det_res(self, points, img_height, img_width):
154
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
155
156
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
161
162
163
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
164
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
165
166
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
MissPenguin's avatar
MissPenguin committed
167
            if rect_width <= 3 or rect_height <= 3:
LDOUBLEV's avatar
LDOUBLEV committed
168
169
170
171
172
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

173
174
175
176
177
178
179
180
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
181

LDOUBLEV's avatar
LDOUBLEV committed
182
183
    def __call__(self, img):
        ori_im = img.copy()
WenmuZhou's avatar
WenmuZhou committed
184
        data = {'image': img}
LDOUBLEV's avatar
LDOUBLEV committed
185
186

        st = time.time()
LDOUBLEV's avatar
LDOUBLEV committed
187

littletomatodonkey's avatar
littletomatodonkey committed
188
        if self.args.benchmark:
Double_V's avatar
Double_V committed
189
            self.autolog.times.start()
LDOUBLEV's avatar
LDOUBLEV committed
190

WenmuZhou's avatar
WenmuZhou committed
191
192
193
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
LDOUBLEV's avatar
LDOUBLEV committed
194
            return None, 0
WenmuZhou's avatar
WenmuZhou committed
195
196
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
197
        img = img.copy()
LDOUBLEV's avatar
LDOUBLEV committed
198

littletomatodonkey's avatar
littletomatodonkey committed
199
        if self.args.benchmark:
Double_V's avatar
Double_V committed
200
            self.autolog.times.stamp()
LDOUBLEV's avatar
LDOUBLEV committed
201

WenmuZhou's avatar
WenmuZhou committed
202
203
        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
204
205
206
207
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
littletomatodonkey's avatar
littletomatodonkey committed
208
        if self.args.benchmark:
Double_V's avatar
Double_V committed
209
            self.autolog.times.stamp()
LDOUBLEV's avatar
LDOUBLEV committed
210

MissPenguin's avatar
MissPenguin committed
211
212
213
214
215
216
217
218
219
        preds = {}
        if self.det_algorithm == "EAST":
            preds['f_geo'] = outputs[0]
            preds['f_score'] = outputs[1]
        elif self.det_algorithm == 'SAST':
            preds['f_border'] = outputs[0]
            preds['f_score'] = outputs[1]
            preds['f_tco'] = outputs[2]
            preds['f_tvo'] = outputs[3]
WenmuZhou's avatar
WenmuZhou committed
220
        elif self.det_algorithm in ['DB', 'PSE']:
WenmuZhou's avatar
WenmuZhou committed
221
            preds['maps'] = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
222
223
        else:
            raise NotImplementedError
LDOUBLEV's avatar
LDOUBLEV committed
224

225
        #self.predictor.try_shrink_memory()
WenmuZhou's avatar
WenmuZhou committed
226
227
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
WenmuZhou's avatar
WenmuZhou committed
228
229
230
        if (self.det_algorithm == "SAST" and
                self.det_sast_polygon) or (self.det_algorithm == "PSE" and
                                           self.det_pse_box_type == 'poly'):
WenmuZhou's avatar
WenmuZhou committed
231
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
MissPenguin's avatar
MissPenguin committed
232
233
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
234

littletomatodonkey's avatar
littletomatodonkey committed
235
        if self.args.benchmark:
Double_V's avatar
Double_V committed
236
            self.autolog.times.end(stamp=True)
LDOUBLEV's avatar
LDOUBLEV committed
237
238
        et = time.time()
        return dt_boxes, et - st
LDOUBLEV's avatar
LDOUBLEV committed
239
240
241
242


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
243
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
244
245
246
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
247
    draw_img_save = "./inference_results"
LDOUBLEV's avatar
LDOUBLEV committed
248

LDOUBLEV's avatar
LDOUBLEV committed
249
250
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
251
        for i in range(2):
LDOUBLEV's avatar
LDOUBLEV committed
252
253
            res = text_detector(img)

littletomatodonkey's avatar
littletomatodonkey committed
254
255
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
256
    save_results = []
LDOUBLEV's avatar
LDOUBLEV committed
257
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
258
259
260
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
261
262
263
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
LDOUBLEV's avatar
LDOUBLEV committed
264
265
266
        st = time.time()
        dt_boxes, _ = text_detector(img)
        elapse = time.time() - st
LDOUBLEV's avatar
LDOUBLEV committed
267
268
269
        if count > 0:
            total_time += elapse
        count += 1
LDOUBLEV's avatar
LDOUBLEV committed
270
271
272
273
        save_pred = os.path.basename(image_file) + "\t" + str(
            json.dumps(np.array(dt_boxes).astype(np.int32).tolist())) + "\n"
        save_results.append(save_pred)
        logger.info(save_pred)
LDOUBLEV's avatar
fix log  
LDOUBLEV committed
274
        logger.info("The predict time of {}: {}".format(image_file, elapse))
dyning's avatar
dyning committed
275
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
WenmuZhou's avatar
WenmuZhou committed
276
        img_name_pure = os.path.split(image_file)[-1]
WenmuZhou's avatar
WenmuZhou committed
277
278
        img_path = os.path.join(draw_img_save,
                                "det_res_{}".format(img_name_pure))
LDOUBLEV's avatar
LDOUBLEV committed
279
        cv2.imwrite(img_path, src_im)
WenmuZhou's avatar
WenmuZhou committed
280
        logger.info("The visualized image saved in {}".format(img_path))
LDOUBLEV's avatar
LDOUBLEV committed
281

LDOUBLEV's avatar
LDOUBLEV committed
282
283
284
    with open(os.path.join(draw_img_save, "det_results.txt"), 'w') as f:
        f.writelines(save_results)
        f.close()
Double_V's avatar
Double_V committed
285
286
    if args.benchmark:
        text_detector.autolog.report()