"vscode:/vscode.git/clone" did not exist on "c7469ebe74a90bb8b704f3d5c1bdfe2d9240dabe"
main.cpp 11.7 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_cls.h>
WenmuZhou's avatar
WenmuZhou committed
32
#include <include/ocr_det.h>
MissPenguin's avatar
MissPenguin committed
33
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
#include <sys/stat.h>

MissPenguin's avatar
MissPenguin committed
37
#include "auto_log/autolog.h"
WenmuZhou's avatar
WenmuZhou committed
38
#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
39
40
41
42

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
43
44
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
45
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
46
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
MissPenguin's avatar
MissPenguin committed
47
DEFINE_bool(benchmark, false, "Whether use benchmark.");
MissPenguin's avatar
MissPenguin committed
48
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
49
50
51
52
53
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
WenmuZhou's avatar
WenmuZhou committed
54
55
DEFINE_double(det_db_box_thresh, 0.6, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.5, "Threshold of det_db_unclip_ratio.");
MissPenguin's avatar
MissPenguin committed
56
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
WenmuZhou's avatar
WenmuZhou committed
57
DEFINE_bool(use_dilation, false, "Whether use the dilation on output map.");
MissPenguin's avatar
MissPenguin committed
58
59
60
61
62
63
64
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
65
DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
WenmuZhou's avatar
WenmuZhou committed
66
67
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt",
              "Path of dictionary.");
MissPenguin's avatar
MissPenguin committed
68
69
70
71
72

using namespace std;
using namespace cv;
using namespace PaddleOCR;

WenmuZhou's avatar
WenmuZhou committed
73
static bool PathExists(const std::string &path) {
MissPenguin's avatar
MissPenguin committed
74
75
76
77
78
79
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
WenmuZhou's avatar
WenmuZhou committed
80
#endif // !_WIN32
MissPenguin's avatar
MissPenguin committed
81
82
}

MissPenguin's avatar
MissPenguin committed
83
int main_det(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
88
  std::vector<double> time_info = {0, 0, 0};
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
WenmuZhou's avatar
WenmuZhou committed
89
90
                 FLAGS_use_polygon_score, FLAGS_use_dilation, FLAGS_visualize,
                 FLAGS_use_tensorrt, FLAGS_precision);
WenmuZhou's avatar
WenmuZhou committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    //       LOG(INFO) << "The predict img: " << cv_all_img_names[i];

    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
    }
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;

    det.Run(srcimg, boxes, &det_times);

    time_info[0] += det_times[0];
    time_info[1] += det_times[1];
    time_info[2] += det_times[2];

MissPenguin's avatar
MissPenguin committed
110
    if (FLAGS_benchmark) {
WenmuZhou's avatar
WenmuZhou committed
111
112
113
114
115
116
117
      cout << cv_all_img_names[i] << '\t';
      for (int n = 0; n < boxes.size(); n++) {
        for (int m = 0; m < boxes[n].size(); m++) {
          cout << boxes[n][m][0] << ' ' << boxes[n][m][1] << ' ';
        }
      }
      cout << endl;
MissPenguin's avatar
MissPenguin committed
118
    }
WenmuZhou's avatar
WenmuZhou committed
119
  }
MissPenguin's avatar
MissPenguin committed
120

WenmuZhou's avatar
WenmuZhou committed
121
122
123
124
125
126
127
128
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                       FLAGS_precision, time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
129

MissPenguin's avatar
MissPenguin committed
130
int main_rec(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
131
  std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
132

WenmuZhou's avatar
WenmuZhou committed
133
134
135
136
  std::string char_list_file = FLAGS_char_list_file;
  if (FLAGS_benchmark)
    char_list_file = FLAGS_char_list_file.substr(6);
  cout << "label file: " << char_list_file << endl;
MissPenguin's avatar
MissPenguin committed
137

WenmuZhou's avatar
WenmuZhou committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                     char_list_file, FLAGS_use_tensorrt, FLAGS_precision,
                     FLAGS_rec_batch_num);

  std::vector<cv::Mat> img_list;
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    LOG(INFO) << "The predict img: " << cv_all_img_names[i];

    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
152
    }
WenmuZhou's avatar
WenmuZhou committed
153
154
155
156
157
158
159
    img_list.push_back(srcimg);
  }
  std::vector<double> rec_times;
  rec.Run(img_list, &rec_times);
  time_info[0] += rec_times[0];
  time_info[1] += rec_times[1];
  time_info[2] += rec_times[2];
MissPenguin's avatar
MissPenguin committed
160

WenmuZhou's avatar
WenmuZhou committed
161
162
163
164
165
166
167
168
169
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                       FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                       time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
170

MissPenguin's avatar
MissPenguin committed
171
int main_system(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
172
173
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
174

WenmuZhou's avatar
WenmuZhou committed
175
176
177
178
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
WenmuZhou's avatar
WenmuZhou committed
179
180
                 FLAGS_use_polygon_score, FLAGS_use_dilation, FLAGS_visualize,
                 FLAGS_use_tensorrt, FLAGS_precision);
WenmuZhou's avatar
WenmuZhou committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

  Classifier *cls = nullptr;
  if (FLAGS_use_angle_cls) {
    cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                         FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                         FLAGS_cls_thresh, FLAGS_use_tensorrt, FLAGS_precision);
  }

  std::string char_list_file = FLAGS_char_list_file;
  if (FLAGS_benchmark)
    char_list_file = FLAGS_char_list_file.substr(6);
  cout << "label file: " << char_list_file << endl;

  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                     char_list_file, FLAGS_use_tensorrt, FLAGS_precision,
                     FLAGS_rec_batch_num);

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    LOG(INFO) << "The predict img: " << cv_all_img_names[i];
MissPenguin's avatar
MissPenguin committed
201

WenmuZhou's avatar
WenmuZhou committed
202
203
204
205
206
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
207
    }
WenmuZhou's avatar
WenmuZhou committed
208
209
210
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;
    std::vector<double> rec_times;
MissPenguin's avatar
MissPenguin committed
211

WenmuZhou's avatar
WenmuZhou committed
212
213
214
215
    det.Run(srcimg, boxes, &det_times);
    time_info_det[0] += det_times[0];
    time_info_det[1] += det_times[1];
    time_info_det[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
216

WenmuZhou's avatar
WenmuZhou committed
217
218
219
220
221
222
223
224
    std::vector<cv::Mat> img_list;
    for (int j = 0; j < boxes.size(); j++) {
      cv::Mat crop_img;
      crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
      if (cls != nullptr) {
        crop_img = cls->Run(crop_img);
      }
      img_list.push_back(crop_img);
MissPenguin's avatar
MissPenguin committed
225
    }
WenmuZhou's avatar
WenmuZhou committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    rec.Run(img_list, &rec_times);
    time_info_rec[0] += rec_times[0];
    time_info_rec[1] += rec_times[1];
    time_info_rec[2] += rec_times[2];
  }

  if (FLAGS_benchmark) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, time_info_det,
                           cv_all_img_names.size());
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           time_info_rec, cv_all_img_names.size());
    autolog_det.report();
    std::cout << endl;
    autolog_rec.report();
  }
  return 0;
}

void check_params(char *mode) {
  if (strcmp(mode, "det") == 0) {
    if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[det]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
256
    }
WenmuZhou's avatar
WenmuZhou committed
257
258
259
260
261
262
263
  }
  if (strcmp(mode, "rec") == 0) {
    if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[rec]: ./ppocr "
                   "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
264
    }
WenmuZhou's avatar
WenmuZhou committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  }
  if (strcmp(mode, "system") == 0) {
    if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() ||
         FLAGS_image_dir.empty()) ||
        (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
      std::cout << "Usage[system without angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      std::cout << "Usage[system with angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--use_angle_cls=true "
                << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
281
    }
WenmuZhou's avatar
WenmuZhou committed
282
283
284
285
286
287
  }
  if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" &&
      FLAGS_precision != "int8") {
    cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
    exit(1);
  }
MissPenguin's avatar
MissPenguin committed
288
289
}

MissPenguin's avatar
MissPenguin committed
290
int main(int argc, char **argv) {
WenmuZhou's avatar
WenmuZhou committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  if (argc <= 1 ||
      (strcmp(argv[1], "det") != 0 && strcmp(argv[1], "rec") != 0 &&
       strcmp(argv[1], "system") != 0)) {
    std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
    return -1;
  }
  std::cout << "mode: " << argv[1] << endl;

  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  check_params(argv[1]);

  if (!PathExists(FLAGS_image_dir)) {
    std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir
              << endl;
    exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(FLAGS_image_dir, cv_all_img_names);
  std::cout << "total images num: " << cv_all_img_names.size() << endl;
MissPenguin's avatar
MissPenguin committed
312

WenmuZhou's avatar
WenmuZhou committed
313
314
315
316
317
318
319
320
321
  if (strcmp(argv[1], "det") == 0) {
    return main_det(cv_all_img_names);
  }
  if (strcmp(argv[1], "rec") == 0) {
    return main_rec(cv_all_img_names);
  }
  if (strcmp(argv[1], "system") == 0) {
    return main_system(cv_all_img_names);
  }
MissPenguin's avatar
MissPenguin committed
322
}