ocr_rec.cpp 6.36 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
WenmuZhou's avatar
WenmuZhou committed
20
                         cv::Mat &img, Classifier *cls) {
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
28
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey committed
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
WenmuZhou's avatar
WenmuZhou committed
30
31
32
    if (cls != nullptr) {
      crop_img = cls->Run(crop_img);
    }
littletomatodonkey's avatar
littletomatodonkey committed
33
34
35

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

root's avatar
root committed
36
    this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey committed
37
38
39
40

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey committed
41
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey committed
42

littletomatodonkey's avatar
littletomatodonkey committed
43
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey committed
44

45
    // Inference.
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();
littletomatodonkey's avatar
littletomatodonkey committed
51

WenmuZhou's avatar
WenmuZhou committed
52
    std::vector<float> predict_batch;
littletomatodonkey's avatar
littletomatodonkey committed
53
    auto output_names = this->predictor_->GetOutputNames();
LDOUBLEV's avatar
LDOUBLEV committed
54
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
WenmuZhou's avatar
WenmuZhou committed
55
    auto predict_shape = output_t->shape();
56

WenmuZhou's avatar
WenmuZhou committed
57
    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
littletomatodonkey's avatar
littletomatodonkey committed
58
                                  std::multiplies<int>());
WenmuZhou's avatar
WenmuZhou committed
59
    predict_batch.resize(out_num);
littletomatodonkey's avatar
littletomatodonkey committed
60

LDOUBLEV's avatar
LDOUBLEV committed
61
    output_t->CopyToCpu(predict_batch.data());
littletomatodonkey's avatar
littletomatodonkey committed
62

WenmuZhou's avatar
WenmuZhou committed
63
64
    // ctc decode
    std::vector<std::string> str_res;
littletomatodonkey's avatar
littletomatodonkey committed
65
    int argmax_idx;
WenmuZhou's avatar
WenmuZhou committed
66
    int last_index = 0;
littletomatodonkey's avatar
littletomatodonkey committed
67
68
69
70
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

WenmuZhou's avatar
WenmuZhou committed
71
    for (int n = 0; n < predict_shape[1]; n++) {
littletomatodonkey's avatar
littletomatodonkey committed
72
      argmax_idx =
WenmuZhou's avatar
WenmuZhou committed
73
74
          int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
littletomatodonkey's avatar
littletomatodonkey committed
75
      max_value =
WenmuZhou's avatar
WenmuZhou committed
76
77
78
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));

Double_V's avatar
Double_V committed
79
      if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
littletomatodonkey's avatar
littletomatodonkey committed
80
81
        score += max_value;
        count += 1;
WenmuZhou's avatar
WenmuZhou committed
82
        str_res.push_back(label_list_[argmax_idx]);
littletomatodonkey's avatar
littletomatodonkey committed
83
      }
WenmuZhou's avatar
WenmuZhou committed
84
      last_index = argmax_idx;
littletomatodonkey's avatar
littletomatodonkey committed
85
86
    }
    score /= count;
WenmuZhou's avatar
WenmuZhou committed
87
88
89
    for (int i = 0; i < str_res.size(); i++) {
      std::cout << str_res[i];
    }
littletomatodonkey's avatar
littletomatodonkey committed
90
91
92
    std::cout << "\tscore: " << score << std::endl;
  }

LDOUBLEV's avatar
LDOUBLEV committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  void CRNNRecognizer::LoadModel(const std::string &model_dir) {
    //   AnalysisConfig config;
    paddle_infer::Config config;
    config.SetModel(model_dir + "/inference.pdmodel",
                    model_dir + "/inference.pdiparams");

    if (this->use_gpu_) {
      config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
      if (this->use_tensorrt_) {
        config.EnableTensorRtEngine(
            1 << 20, 10, 3,
            this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
                            : paddle_infer::Config::Precision::kFloat32,
            false, false);
      }
    } else {
      config.DisableGpu();
      if (this->use_mkldnn_) {
        config.EnableMKLDNN();
        // cache 10 different shapes for mkldnn to avoid memory leak
        config.SetMkldnnCacheCapacity(10);
      }
      config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
    }
littletomatodonkey's avatar
littletomatodonkey committed
117

LDOUBLEV's avatar
LDOUBLEV committed
118
119
120
    config.SwitchUseFeedFetchOps(false);
    // true for multiple input
    config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
121

LDOUBLEV's avatar
LDOUBLEV committed
122
    config.SwitchIrOptim(true);
littletomatodonkey's avatar
littletomatodonkey committed
123

LDOUBLEV's avatar
LDOUBLEV committed
124
125
    config.EnableMemoryOptim();
    config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
126

LDOUBLEV's avatar
LDOUBLEV committed
127
    this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
128
129
  }

LDOUBLEV's avatar
LDOUBLEV committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
  cv::Mat CRNNRecognizer::GetRotateCropImage(
      const cv::Mat &srcimage, std::vector<std::vector<int>> box) {
    cv::Mat image;
    srcimage.copyTo(image);
    std::vector<std::vector<int>> points = box;

    int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
    int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
    int left = int(*std::min_element(x_collect, x_collect + 4));
    int right = int(*std::max_element(x_collect, x_collect + 4));
    int top = int(*std::min_element(y_collect, y_collect + 4));
    int bottom = int(*std::max_element(y_collect, y_collect + 4));

    cv::Mat img_crop;
    image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

    for (int i = 0; i < points.size(); i++) {
      points[i][0] -= left;
      points[i][1] -= top;
    }

    int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                  pow(points[0][1] - points[1][1], 2)));
    int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                   pow(points[0][1] - points[3][1], 2)));

    cv::Point2f pts_std[4];
    pts_std[0] = cv::Point2f(0., 0.);
    pts_std[1] = cv::Point2f(img_crop_width, 0.);
    pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
    pts_std[3] = cv::Point2f(0.f, img_crop_height);

    cv::Point2f pointsf[4];
    pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
    pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
    pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
    pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

    cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

    cv::Mat dst_img;
    cv::warpPerspective(img_crop, dst_img, M,
                        cv::Size(img_crop_width, img_crop_height),
                        cv::BORDER_REPLICATE);

    if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
      cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
      cv::transpose(dst_img, srcCopy);
      cv::flip(srcCopy, srcCopy, 0);
      return srcCopy;
    } else {
      return dst_img;
    }
littletomatodonkey's avatar
littletomatodonkey committed
183
184
  }

littletomatodonkey's avatar
littletomatodonkey committed
185
} // namespace PaddleOCR