db_fpn.py 9.31 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
LDOUBLEV's avatar
LDOUBLEV committed
23
import os
LDOUBLEV's avatar
fix det  
LDOUBLEV committed
24
25
import sys

LDOUBLEV's avatar
fix  
LDOUBLEV committed
26
27
28
29
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

LDOUBLEV's avatar
fix  
LDOUBLEV committed
30
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule, ConvBNLayer
WenmuZhou's avatar
WenmuZhou committed
31
32


dyning's avatar
dyning committed
33
class DBFPN(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
34
    def __init__(self, in_channels, out_channels, **kwargs):
dyning's avatar
dyning committed
35
        super(DBFPN, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
36
        self.out_channels = out_channels
37
        weight_attr = paddle.nn.initializer.KaimingUniform()
WenmuZhou's avatar
WenmuZhou committed
38

dyning's avatar
dyning committed
39
        self.in2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
40
41
42
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
43
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
44
            bias_attr=False)
dyning's avatar
dyning committed
45
        self.in3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
46
47
48
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
49
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
50
            bias_attr=False)
dyning's avatar
dyning committed
51
        self.in4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
52
53
54
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
55
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
56
            bias_attr=False)
dyning's avatar
dyning committed
57
        self.in5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
58
59
60
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
61
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
62
            bias_attr=False)
dyning's avatar
dyning committed
63
        self.p5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
64
65
66
67
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
68
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
69
            bias_attr=False)
dyning's avatar
dyning committed
70
        self.p4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
71
72
73
74
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
75
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
76
            bias_attr=False)
dyning's avatar
dyning committed
77
        self.p3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
78
79
80
81
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
82
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
83
            bias_attr=False)
dyning's avatar
dyning committed
84
        self.p2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
85
86
87
88
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
89
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
90
91
92
93
94
95
96
97
98
99
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

WenmuZhou's avatar
WenmuZhou committed
100
101
102
103
104
105
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
WenmuZhou's avatar
WenmuZhou committed
106
107
108
109
110

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
WenmuZhou's avatar
WenmuZhou committed
111
112
113
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
WenmuZhou's avatar
WenmuZhou committed
114
115
116

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120
121
122


class CALayer(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
        super(CALayer, self).__init__()
        weight_attr = paddle.nn.initializer.KaimingUniform()
LDOUBLEV's avatar
fix  
LDOUBLEV committed
123
        self.out_channels = out_channels
LDOUBLEV's avatar
LDOUBLEV committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


class CAFPN(nn.Layer):
LDOUBLEV's avatar
fix det  
LDOUBLEV committed
144
    def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
145
        super(CAFPN, self).__init__()
LDOUBLEV's avatar
fix det  
LDOUBLEV committed
146
        self.out_channels = out_channels
LDOUBLEV's avatar
LDOUBLEV committed
147
148
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

        for i in range(len(in_channels)):
            self.ins_conv.append(
                CALayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                CALayer(
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
LDOUBLEV's avatar
LDOUBLEV committed
190
191
192
193
194
195
196
197


class FEPAN(nn.Layer):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(FEPAN, self).__init__()
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

LDOUBLEV's avatar
fix det  
LDOUBLEV committed
198
199
        self.ins_conv = []
        self.inp_conv = []
LDOUBLEV's avatar
LDOUBLEV committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        # pan head
        self.pan_head_conv = []
        self.pan_lat_conv = []

        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
                    in_channels=in_channels[0],
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
                ConvBNLayer(
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
                ConvBNLayer(
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

        pan3 = f3 + self.pan_head[0](f2)
        pan4 = f4 + self.pan_head[1](pan3)
        pan5 = f5 + self.pan_head[2](pan4)

        p2 = self.pan_lat[0](f2)
        p3 = self.pan_lat[1](pan3)
        p4 = self.pan_lat[2](pan4)
        p5 = self.pan_lat[3](pan5)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse