inference_en.md 23.4 KB
Newer Older
Khanh Tran's avatar
Khanh Tran committed
1

tink2123's avatar
tink2123 committed
2
# Reasoning based on Python prediction engine
Khanh Tran's avatar
Khanh Tran committed
3

WenmuZhou's avatar
WenmuZhou committed
4
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
Khanh Tran's avatar
Khanh Tran committed
5
6
7

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

WenmuZhou's avatar
WenmuZhou committed
8
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
Khanh Tran's avatar
Khanh Tran committed
9

WenmuZhou's avatar
WenmuZhou committed
10
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
Khanh Tran's avatar
Khanh Tran committed
11

licx's avatar
licx committed
12
13
14
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
    - [Convert detection model to inference model](#Convert_detection_model)
    - [Convert recognition model to inference model](#Convert_recognition_model)
WenmuZhou's avatar
WenmuZhou committed
15
16
17
    - [Convert angle classification model to inference model](#Convert_angle_class_model)


licx's avatar
licx committed
18
19
20
21
22
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
    - [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
    - [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
    - [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
WenmuZhou's avatar
WenmuZhou committed
23
24
    - [5. Multilingual model inference](#Multilingual model inference)

licx's avatar
licx committed
25
26
27
28
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
    - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
    - [3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE](#ATTENTION-BASED_RECOGNITION)
WenmuZhou's avatar
WenmuZhou committed
29
30
    - [4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
    - [5. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
WenmuZhou's avatar
WenmuZhou committed
31
32
33
34
35

- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
    - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)

- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
licx's avatar
licx committed
36
37
    - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
    - [2. OTHER MODELS](#OTHER_MODELS)
WenmuZhou's avatar
WenmuZhou committed
38

licx's avatar
licx committed
39
<a name="CONVERT"></a>
xxxpsyduck's avatar
xxxpsyduck committed
40
## CONVERT TRAINING MODEL TO INFERENCE MODEL
licx's avatar
licx committed
41
<a name="Convert_detection_model"></a>
xxxpsyduck's avatar
xxxpsyduck committed
42
### Convert detection model to inference model
Khanh Tran's avatar
Khanh Tran committed
43

xxxpsyduck's avatar
xxxpsyduck committed
44
Download the lightweight Chinese detection model:
Khanh Tran's avatar
Khanh Tran committed
45
```
WenmuZhou's avatar
WenmuZhou committed
46
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
Khanh Tran's avatar
Khanh Tran committed
47
```
WenmuZhou's avatar
WenmuZhou committed
48

Khanh Tran's avatar
Khanh Tran committed
49
50
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
WenmuZhou's avatar
WenmuZhou committed
51
52
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
WenmuZhou's avatar
WenmuZhou committed
53
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
WenmuZhou's avatar
WenmuZhou committed
54
55
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
tink2123's avatar
tink2123 committed
56

WenmuZhou's avatar
WenmuZhou committed
57
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
Khanh Tran's avatar
Khanh Tran committed
58
```
WenmuZhou's avatar
WenmuZhou committed
59

WenmuZhou's avatar
WenmuZhou committed
60
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
WenmuZhou's avatar
WenmuZhou committed
61
After the conversion is successful, there are three files in the model save directory:
Khanh Tran's avatar
Khanh Tran committed
62
63
```
inference/det_db/
64
65
66
    ├── inference.pdiparams         # The parameter file of detection inference model
    ├── inference.pdiparams.info    # The parameter information of detection inference model, which can be ignored
    └── inference.pdmodel           # The program file of detection inference model
Khanh Tran's avatar
Khanh Tran committed
67
68
```

licx's avatar
licx committed
69
<a name="Convert_recognition_model"></a>
xxxpsyduck's avatar
xxxpsyduck committed
70
### Convert recognition model to inference model
Khanh Tran's avatar
Khanh Tran committed
71

xxxpsyduck's avatar
xxxpsyduck committed
72
Download the lightweight Chinese recognition model:
Khanh Tran's avatar
Khanh Tran committed
73
```
WenmuZhou's avatar
WenmuZhou committed
74
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
Khanh Tran's avatar
Khanh Tran committed
75
76
77
78
```

The recognition model is converted to the inference model in the same way as the detection, as follows:
```
WenmuZhou's avatar
WenmuZhou committed
79
80
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
WenmuZhou's avatar
WenmuZhou committed
81
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
WenmuZhou's avatar
WenmuZhou committed
82
83
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
tink2123's avatar
tink2123 committed
84

WenmuZhou's avatar
WenmuZhou committed
85
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
Khanh Tran's avatar
Khanh Tran committed
86
87
88
89
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

WenmuZhou's avatar
WenmuZhou committed
90
After the conversion is successful, there are three files in the model save directory:
Khanh Tran's avatar
Khanh Tran committed
91
```
WenmuZhou's avatar
WenmuZhou committed
92
inference/det_db/
93
94
95
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
Khanh Tran's avatar
Khanh Tran committed
96
97
```

WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model

Download the angle classification model:
```
WenmuZhou's avatar
WenmuZhou committed
103
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
```

The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
WenmuZhou's avatar
WenmuZhou committed
108
109
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
WenmuZhou's avatar
WenmuZhou committed
110
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
WenmuZhou's avatar
WenmuZhou committed
111
112
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
WenmuZhou's avatar
WenmuZhou committed
113

WenmuZhou's avatar
WenmuZhou committed
114
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
WenmuZhou's avatar
WenmuZhou committed
115
116
117
118
```

After the conversion is successful, there are two files in the directory:
```
WenmuZhou's avatar
WenmuZhou committed
119
inference/det_db/
120
121
122
    ├── inference.pdiparams         # The parameter file of angle class inference model
    ├── inference.pdiparams.info    # The parameter information of  angle class inference model, which can be ignored
    └── inference.pdmodel           # The program file of angle class model
WenmuZhou's avatar
WenmuZhou committed
123
124
125
```


licx's avatar
licx committed
126
<a name="DETECTION_MODEL_INFERENCE"></a>
xxxpsyduck's avatar
xxxpsyduck committed
127
## TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
128

tink2123's avatar
tink2123 committed
129
130
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
Khanh Tran's avatar
Khanh Tran committed
131

licx's avatar
licx committed
132
<a name="LIGHTWEIGHT_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
133
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
134

xxxpsyduck's avatar
xxxpsyduck committed
135
For lightweight Chinese detection model inference, you can execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
136
137
138
139
140
141
142

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

143
![](../imgs_results/det_res_2.jpg)
Khanh Tran's avatar
Khanh Tran committed
144

WenmuZhou's avatar
WenmuZhou committed
145
146
147
The size of the image is limited by the parameters `limit_type` and `det_limit_side_len`, `limit_type=max` is to limit the length of the long side <`det_limit_side_len`, and `limit_type=min` is to limit the length of the short side>`det_limit_side_len`,
When the picture does not meet the restriction conditions (for `limit_type=max`and  long side >`det_limit_side_len` or for `min` and short side <`det_limit_side_len`), the image will be scaled proportionally.
This parameter is set to `limit_type='max', det_max_side_len=960` by default. If the resolution of the input picture is relatively large, and you want to use a larger resolution prediction, you can execute the following command:
Khanh Tran's avatar
Khanh Tran committed
148
149

```
WenmuZhou's avatar
WenmuZhou committed
150
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1200
Khanh Tran's avatar
Khanh Tran committed
151
152
153
154
155
156
157
```

If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```

licx's avatar
licx committed
158
<a name="DB_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
159
### 2. DB TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
160

WenmuZhou's avatar
WenmuZhou committed
161
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
Khanh Tran's avatar
Khanh Tran committed
162
163

```
WenmuZhou's avatar
WenmuZhou committed
164
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
Khanh Tran's avatar
Khanh Tran committed
165
166
167
168
169
170
171
172
173
174
```

DB text detection model inference, you can execute the following command:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

175
![](../imgs_results/det_res_img_10_db.jpg)
Khanh Tran's avatar
Khanh Tran committed
176
177
178

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.

licx's avatar
licx committed
179
<a name="EAST_DETECTION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
180
### 3. EAST TEXT DETECTION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
181

WenmuZhou's avatar
WenmuZhou committed
182
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
Khanh Tran's avatar
Khanh Tran committed
183
184

```
WenmuZhou's avatar
WenmuZhou committed
185
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
Khanh Tran's avatar
Khanh Tran committed
186
```
licx's avatar
licx committed
187
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
Khanh Tran's avatar
Khanh Tran committed
188
189
190
191

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
licx's avatar
licx committed
192

Khanh Tran's avatar
Khanh Tran committed
193
194
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

195
![](../imgs_results/det_res_img_10_east.jpg)
Khanh Tran's avatar
Khanh Tran committed
196

licx's avatar
licx committed
197
198
199
200
201
202
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.


<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)  
WenmuZhou's avatar
WenmuZhou committed
203
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
licx's avatar
licx committed
204
205

```
WenmuZhou's avatar
WenmuZhou committed
206
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
licx's avatar
licx committed
207
208
209
```

**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
Khanh Tran's avatar
Khanh Tran committed
210

licx's avatar
licx committed
211
212
213
214
215
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
Khanh Tran's avatar
Khanh Tran committed
216

licx's avatar
licx committed
217
218
219
![](../imgs_results/det_res_img_10_sast.jpg)

#### (2). Curved text detection model (Total-Text)  
WenmuZhou's avatar
WenmuZhou committed
220
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link (coming soon)](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
licx's avatar
licx committed
221
222

```
WenmuZhou's avatar
WenmuZhou committed
223
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
licx's avatar
licx committed
224
225
226
227
228
229
230
231
232
233
```

**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:

```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

MissPenguin's avatar
MissPenguin committed
234
![](../imgs_results/det_res_img623_sast.jpg)
licx's avatar
licx committed
235
236
237
238

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.

<a name="RECOGNITION_MODEL_INFERENCE"></a>
xxxpsyduck's avatar
xxxpsyduck committed
239
## TEXT RECOGNITION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
240

xxxpsyduck's avatar
xxxpsyduck committed
241
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
Khanh Tran's avatar
Khanh Tran committed
242
243


licx's avatar
licx committed
244
<a name="LIGHTWEIGHT_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
245
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
Khanh Tran's avatar
Khanh Tran committed
246

xxxpsyduck's avatar
xxxpsyduck committed
247
For lightweight Chinese recognition model inference, you can execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
248
249
250
251
252

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
```

253
![](../imgs_words/ch/word_4.jpg)
Khanh Tran's avatar
Khanh Tran committed
254
255
256
257
258
259

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]


licx's avatar
licx committed
260
<a name="CTC-BASED_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
261
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
Khanh Tran's avatar
Khanh Tran committed
262

WenmuZhou's avatar
WenmuZhou committed
263
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
Khanh Tran's avatar
Khanh Tran committed
264

WenmuZhou's avatar
WenmuZhou committed
265
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
Khanh Tran's avatar
Khanh Tran committed
266
267

```
WenmuZhou's avatar
WenmuZhou committed
268
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
Khanh Tran's avatar
Khanh Tran committed
269
270
```

WenmuZhou's avatar
WenmuZhou committed
271
For CRNN text recognition model inference, execute the following commands:
Khanh Tran's avatar
Khanh Tran committed
272
273
274
275

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```
xxxpsyduck's avatar
xxxpsyduck committed
276

licx's avatar
licx committed
277
<a name="ATTENTION-BASED_RECOGNITION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
278
### 3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE
279
![](../imgs_words_en/word_336.png)
Khanh Tran's avatar
Khanh Tran committed
280

WenmuZhou's avatar
WenmuZhou committed
281
The recognition model based on Attention loss is different from ctc, and additional recognition algorithm parameters need to be set --rec_algorithm="RARE"
Khanh Tran's avatar
Khanh Tran committed
282
After executing the command, the recognition result of the above image is as follows:
WenmuZhou's avatar
WenmuZhou committed
283
284
285
```bash
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE"
```
Khanh Tran's avatar
Khanh Tran committed
286
287
288

Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]

xxxpsyduck's avatar
xxxpsyduck committed
289
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
Khanh Tran's avatar
Khanh Tran committed
290
291
292
293
294
295
296
297
298
299

- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.

- Character list: the experiment in the DTRB paper is only for 26 lowercase English characters and 10 numbers, a total of 36 characters. All upper and lower case characters are converted to lower case characters, and characters not in the above list are ignored and considered as spaces. Therefore, no characters dictionary file is used here, but a dictionary is generated by the below command. Therefore, the parameter `rec_char_type` needs to be set during inference, which is specified as "en" in English.

```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
```

licx's avatar
licx committed
300
<a name="USING_CUSTOM_CHARACTERS"></a>
WenmuZhou's avatar
WenmuZhou committed
301
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
WenmuZhou's avatar
WenmuZhou committed
302
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
LDOUBLEV's avatar
LDOUBLEV committed
303
304

```
WenmuZhou's avatar
WenmuZhou committed
305
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
LDOUBLEV's avatar
LDOUBLEV committed
306
307
```

WenmuZhou's avatar
WenmuZhou committed
308
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
WenmuZhou's avatar
WenmuZhou committed
309
### 5. MULTILINGAUL MODEL INFERENCE
WenmuZhou's avatar
WenmuZhou committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/korean.ttf"
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
2020-09-19 16:15:05,076-INFO:      index: [205 206  38  39]
2020-09-19 16:15:05,077-INFO:      word : 바탕으로
2020-09-19 16:15:05,077-INFO:      score: 0.9171358942985535
```

<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE

The following will introduce the angle classification model inference.


<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE

For angle classification model inference, you can execute the following commands:

```
WenmuZhou's avatar
WenmuZhou committed
338
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
WenmuZhou's avatar
WenmuZhou committed
339
340
```

WenmuZhou's avatar
WenmuZhou committed
341
![](../imgs_words_en/word_10.png)
WenmuZhou's avatar
WenmuZhou committed
342
343
344

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

WenmuZhou's avatar
WenmuZhou committed
345
```
WenmuZhou's avatar
WenmuZhou committed
346
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
WenmuZhou's avatar
WenmuZhou committed
347
```
WenmuZhou's avatar
WenmuZhou committed
348

licx's avatar
licx committed
349
<a name="CONCATENATION"></a>
WenmuZhou's avatar
WenmuZhou committed
350
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
Khanh Tran's avatar
Khanh Tran committed
351

licx's avatar
licx committed
352
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
xxxpsyduck's avatar
xxxpsyduck committed
353
### 1. LIGHTWEIGHT CHINESE MODEL
Khanh Tran's avatar
Khanh Tran committed
354

WenmuZhou's avatar
WenmuZhou committed
355
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model.The visualized recognition results are saved to the `./inference_results` folder by default.
Khanh Tran's avatar
Khanh Tran committed
356
357

```
WenmuZhou's avatar
WenmuZhou committed
358
359
360
361
362
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
Khanh Tran's avatar
Khanh Tran committed
363
364
365
366
```

After executing the command, the recognition result image is as follows:

367
![](../imgs_results/2.jpg)
Khanh Tran's avatar
Khanh Tran committed
368

licx's avatar
licx committed
369
<a name="OTHER_MODELS"></a>
xxxpsyduck's avatar
xxxpsyduck committed
370
### 2. OTHER MODELS
Khanh Tran's avatar
Khanh Tran committed
371

licx's avatar
licx committed
372
373
374
375
376
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.

**Note: due to the limitation of rotation logic of detected box, SAST curved text detection model (using the parameter `det_sast_polygon=True`) is not supported for model combination yet.**

The following command uses the combination of the EAST text detection and STAR-Net text recognition:
Khanh Tran's avatar
Khanh Tran committed
377
378
379
380
381
382
383

```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
```

After executing the command, the recognition result image is as follows:

384
![](../imgs_results/img_10.jpg)