"include/ck/utility/functional.hpp" did not exist on "81497a93a0840d5a1b5e84c1e47a90ae39d0fee6"
visual.py 5.13 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Jethong's avatar
Jethong committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Jethong's avatar
Jethong committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import cv2
import time


def resize_image(im, max_side_len=512):
    """
    resize image to a size multiple of max_stride which is required by the network
    :param im: the resized image
    :param max_side_len: limit of max image size to avoid out of memory in gpu
    :return: the resized image and the resize ratio
    """
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    if resize_h > resize_w:
        ratio = float(max_side_len) / resize_h
    else:
        ratio = float(max_side_len) / resize_w

    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    max_stride = 128
    resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
    resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)

    return im, (ratio_h, ratio_w)


def resize_image_min(im, max_side_len=512):
    """
    """
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    if resize_h < resize_w:
        ratio = float(max_side_len) / resize_h
    else:
        ratio = float(max_side_len) / resize_w

    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    max_stride = 128
    resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
    resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)
    return im, (ratio_h, ratio_w)


def resize_image_for_totaltext(im, max_side_len=512):
    """
    """
    h, w, _ = im.shape

    resize_w = w
    resize_h = h
    ratio = 1.25
    if h * ratio > max_side_len:
        ratio = float(max_side_len) / resize_h
Jethong's avatar
Jethong committed
84

Jethong's avatar
Jethong committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    max_stride = 128
    resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
    resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)
    return im, (ratio_h, ratio_w)


def point_pair2poly(point_pair_list):
    """
    Transfer vertical point_pairs into poly point in clockwise.
    """
    pair_length_list = []
    for point_pair in point_pair_list:
        pair_length = np.linalg.norm(point_pair[0] - point_pair[1])
        pair_length_list.append(pair_length)
    pair_length_list = np.array(pair_length_list)
    pair_info = (pair_length_list.max(), pair_length_list.min(),
                 pair_length_list.mean())

    point_num = len(point_pair_list) * 2
    point_list = [0] * point_num
    for idx, point_pair in enumerate(point_pair_list):
        point_list[idx] = point_pair[0]
        point_list[point_num - 1 - idx] = point_pair[1]
    return np.array(point_list).reshape(-1, 2), pair_info


def shrink_quad_along_width(quad, begin_width_ratio=0., end_width_ratio=1.):
    """
    Generate shrink_quad_along_width.
    """
    ratio_pair = np.array(
        [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
    p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
    p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
    return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])


def expand_poly_along_width(poly, shrink_ratio_of_width=0.3):
    """
    expand poly along width.
    """
    point_num = poly.shape[0]
    left_quad = np.array(
        [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
    left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
                 (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
    left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0)
    right_quad = np.array(
        [
            poly[point_num // 2 - 2], poly[point_num // 2 - 1],
            poly[point_num // 2], poly[point_num // 2 + 1]
        ],
        dtype=np.float32)
    right_ratio = 1.0 + \
                  shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
                  (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
    right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio)
    poly[0] = left_quad_expand[0]
    poly[-1] = left_quad_expand[-1]
    poly[point_num // 2 - 1] = right_quad_expand[1]
    poly[point_num // 2] = right_quad_expand[2]
    return poly


def norm2(x, axis=None):
    if axis:
        return np.sqrt(np.sum(x**2, axis=axis))
    return np.sqrt(np.sum(x**2))


def cos(p1, p2):
    return (p1 * p2).sum() / (norm2(p1) * norm2(p2))