visual.py 11.4 KB
Newer Older
Jethong's avatar
Jethong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import numpy as np
import cv2
import time


def visualize_e2e_result(im_fn, poly_list, seq_strs, src_im):
    """
    """
    result_path = './out'
    im_basename = os.path.basename(im_fn)
    im_prefix = im_basename[:im_basename.rfind('.')]
    vis_det_img = src_im.copy()
    valid_set = 'partvgg'
    gt_dir = "/Users/hongyongjie/Downloads/part_vgg_synth/train"
    text_path = os.path.join(gt_dir, im_prefix + '.txt')
    fid = open(text_path, 'r')
    lines = [line.strip() for line in fid.readlines()]
    for line in lines:
        if valid_set == 'partvgg':
            tokens = line.strip().split('\t')[0].split(',')
            # tokens = line.strip().split(',')
            coords = tokens[:]
            coords = list(map(float, coords))
            gt_poly = np.array(coords).reshape(1, 4, 2)
        elif valid_set == 'totaltext':
            tokens = line.strip().split('\t')[0].split(',')
            coords = tokens[:]
            coords_len = len(coords) / 2
            coords = list(map(float, coords))
            gt_poly = np.array(coords).reshape(1, coords_len, 2)
        cv2.polylines(
            vis_det_img,
            np.array(gt_poly).astype(np.int32),
            isClosed=True,
            color=(255, 0, 0),
            thickness=2)

    for detected_poly, recognized_str in zip(poly_list, seq_strs):
        cv2.polylines(
            vis_det_img,
            np.array(detected_poly[np.newaxis, ...]).astype(np.int32),
            isClosed=True,
            color=(0, 0, 255),
            thickness=2)
        cv2.putText(
            vis_det_img,
            recognized_str,
            org=(int(detected_poly[0, 0]), int(detected_poly[0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)

    if not os.path.exists(result_path):
        os.makedirs(result_path)
    cv2.imwrite("{}/{}_detection.jpg".format(result_path, im_prefix),
                vis_det_img)


def visualization_output(src_image,
                         f_tcl,
                         f_chars,
                         output_dir,
                         image_prefix=None):
    """
    """
    # restore BGR image, CHW -> HWC
    im_mean = [0.485, 0.456, 0.406]
    im_std = [0.229, 0.224, 0.225]

    im_mean = np.array(im_mean).reshape((3, 1, 1))
    im_std = np.array(im_std).reshape((3, 1, 1))
    src_image *= im_std
    src_image += im_mean
    src_image = src_image.transpose([1, 2, 0])
    src_image = src_image[:, :, ::-1] * 255  # BGR -> RGB
    H, W, _ = src_image.shape

    file_prefix = image_prefix if image_prefix is not None else str(
        int(time.time() * 1000))
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # visualization f_tcl
    tcl_file_name = os.path.join(output_dir, file_prefix + '_0_tcl.jpg')
    vis_tcl_img = src_image.copy()
    f_tcl_resized = cv2.resize(f_tcl, dsize=(W, H))
    vis_tcl_img[:, :, 1] = f_tcl_resized * 255
    cv2.imwrite(tcl_file_name, vis_tcl_img)

    # visualization char maps
    vis_char_img = src_image.copy()
    # CHW -> HWC
    char_file_name = os.path.join(output_dir, file_prefix + '_1_chars.jpg')
    f_chars = np.argmax(f_chars, axis=2)[:, :, np.newaxis].astype('float32')
    f_chars[f_chars < 95] = 1.0
    f_chars[f_chars == 95] = 0.0
    f_chars_resized = cv2.resize(f_chars, dsize=(W, H))
    vis_char_img[:, :, 1] = f_chars_resized * 255
    cv2.imwrite(char_file_name, vis_char_img)


def visualize_point_result(im_fn, point_list, point_pair_list, src_im, gt_dir,
                           result_path):
    """
    """
    im_basename = os.path.basename(im_fn)
    im_prefix = im_basename[:im_basename.rfind('.')]
    vis_det_img = src_im.copy()

    # draw gt bbox on the image.
    text_path = os.path.join(gt_dir, im_prefix + '.txt')
    fid = open(text_path, 'r')
    lines = [line.strip() for line in fid.readlines()]
    for line in lines:
        tokens = line.strip().split('\t')
        coords = tokens[0].split(',')
        coords_len = len(coords)
        coords = list(map(float, coords))
        gt_poly = np.array(coords).reshape(1, coords_len / 2, 2)
        cv2.polylines(
            vis_det_img,
            np.array(gt_poly).astype(np.int32),
            isClosed=True,
            color=(255, 255, 255),
            thickness=1)

    for point, point_pair in zip(point_list, point_pair_list):
        cv2.line(
            vis_det_img,
            tuple(point_pair[0]),
            tuple(point_pair[1]), (0, 255, 255),
            thickness=1)
        cv2.circle(vis_det_img, tuple(point), 2, (0, 0, 255))
        cv2.circle(vis_det_img, tuple(point_pair[0]), 2, (255, 0, 0))
        cv2.circle(vis_det_img, tuple(point_pair[1]), 2, (0, 255, 0))

    if not os.path.exists(result_path):
        os.makedirs(result_path)
    cv2.imwrite("{}/{}_border_points.jpg".format(result_path, im_prefix),
                vis_det_img)


def resize_image(im, max_side_len=512):
    """
    resize image to a size multiple of max_stride which is required by the network
    :param im: the resized image
    :param max_side_len: limit of max image size to avoid out of memory in gpu
    :return: the resized image and the resize ratio
    """
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    # Fix the longer side
    if resize_h > resize_w:
        ratio = float(max_side_len) / resize_h
    else:
        ratio = float(max_side_len) / resize_w

    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    max_stride = 128
    resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
    resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)

    return im, (ratio_h, ratio_w)


def resize_image_min(im, max_side_len=512):
    """
    """
    print('--> Using resize_image_min')
    h, w, _ = im.shape

    resize_w = w
    resize_h = h

    # Fix the longer side
    if resize_h < resize_w:
        ratio = float(max_side_len) / resize_h
    else:
        ratio = float(max_side_len) / resize_w

    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    max_stride = 128
    resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
    resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)
    return im, (ratio_h, ratio_w)


def resize_image_for_totaltext(im, max_side_len=512):
    """
    """
    h, w, _ = im.shape

    resize_w = w
    resize_h = h
    ratio = 1.25
    if h * ratio > max_side_len:
        ratio = float(max_side_len) / resize_h
        # Fix the longer side
        # if resize_h > resize_w:
        #    ratio = float(max_side_len) / resize_h
        # else:
        #    ratio = float(max_side_len) / resize_w
    ###
    resize_h = int(resize_h * ratio)
    resize_w = int(resize_w * ratio)

    max_stride = 128
    resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
    resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
    im = cv2.resize(im, (int(resize_w), int(resize_h)))
    ratio_h = resize_h / float(h)
    ratio_w = resize_w / float(w)
    return im, (ratio_h, ratio_w)


def point_pair2poly(point_pair_list):
    """
    Transfer vertical point_pairs into poly point in clockwise.
    """
    pair_length_list = []
    for point_pair in point_pair_list:
        pair_length = np.linalg.norm(point_pair[0] - point_pair[1])
        pair_length_list.append(pair_length)
    pair_length_list = np.array(pair_length_list)
    pair_info = (pair_length_list.max(), pair_length_list.min(),
                 pair_length_list.mean())

    # constract poly
    point_num = len(point_pair_list) * 2
    point_list = [0] * point_num
    for idx, point_pair in enumerate(point_pair_list):
        point_list[idx] = point_pair[0]
        point_list[point_num - 1 - idx] = point_pair[1]
    return np.array(point_list).reshape(-1, 2), pair_info


def shrink_quad_along_width(quad, begin_width_ratio=0., end_width_ratio=1.):
    """
    Generate shrink_quad_along_width.
    """
    ratio_pair = np.array(
        [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
    p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
    p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
    return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])


def expand_poly_along_width(poly, shrink_ratio_of_width=0.3):
    """
    expand poly along width.
    """
    point_num = poly.shape[0]
    left_quad = np.array(
        [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
    left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
                 (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
    left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0)
    right_quad = np.array(
        [
            poly[point_num // 2 - 2], poly[point_num // 2 - 1],
            poly[point_num // 2], poly[point_num // 2 + 1]
        ],
        dtype=np.float32)
    right_ratio = 1.0 + \
                  shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
                  (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
    right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio)
    poly[0] = left_quad_expand[0]
    poly[-1] = left_quad_expand[-1]
    poly[point_num // 2 - 1] = right_quad_expand[1]
    poly[point_num // 2] = right_quad_expand[2]
    return poly


def norm2(x, axis=None):
    if axis:
        return np.sqrt(np.sum(x**2, axis=axis))
    return np.sqrt(np.sum(x**2))


def cos(p1, p2):
    return (p1 * p2).sum() / (norm2(p1) * norm2(p2))


def generate_direction_info(image_fn,
                            H,
                            W,
                            ratio_h,
                            ratio_w,
                            max_length=640,
                            out_scale=4,
                            gt_dir=None):
    """
    """
    im_basename = os.path.basename(image_fn)
    im_prefix = im_basename[:im_basename.rfind('.')]
    instance_direction_map = np.zeros(shape=[H // out_scale, W // out_scale, 3])

    if gt_dir is None:
        gt_dir = '/home/vis/huangzuming/data/SYNTH_DATA/part_vgg_synth_icdar/processed/val/poly'

    # get gt label map
    text_path = os.path.join(gt_dir, im_prefix + '.txt')
    fid = open(text_path, 'r')
    lines = [line.strip() for line in fid.readlines()]
    for label_idx, line in enumerate(lines, start=1):
        coords, txt = line.strip().split('\t')
        if txt == '###':
            continue
        tokens = coords.strip().split(',')
        coords = list(map(float, tokens))
        poly = np.array(coords).reshape(4, 2) * np.array(
            [ratio_w, ratio_h]).reshape(1, 2) / out_scale
        mid_idx = poly.shape[0] // 2
        direct_vector = (
            (poly[mid_idx] + poly[mid_idx - 1]) - (poly[0] + poly[-1])) / 2.0

        direct_vector /= len(txt)
        # l2_distance = norm2(direct_vector)
        # avg_char_distance = l2_distance / len(txt)
        avg_char_distance = 1.0

        direct_label = (direct_vector[0], direct_vector[1], avg_char_distance)
        cv2.fillPoly(instance_direction_map,
                     poly.round().astype(np.int32)[np.newaxis, :, :],
                     direct_label)
    instance_direction_map = instance_direction_map.transpose([2, 0, 1])
    return instance_direction_map[:2, ...]