test.sh 8.75 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
#!/bin/bash 
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
# Usage:
# bash test/test.sh ./test/params.txt 'lite_train_infer'

LDOUBLEV's avatar
LDOUBLEV committed
5
6
7
8
9
10
FILENAME=$1

# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
# prepare pretrained weights and dataset 
wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
LDOUBLEV's avatar
LDOUBLEV committed
11

LDOUBLEV's avatar
LDOUBLEV committed
12
13
14
15
if [ ${MODE} = "lite_train_infer" ];then
    # pretrain lite train data
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
LDOUBLEV's avatar
LDOUBLEV committed
16
    cd ./train_data/ && tar xf icdar2015_lite.tar
LDOUBLEV's avatar
LDOUBLEV committed
17
18
    ln -s ./icdar2015_lite ./icdar2015
    cd ../
LDOUBLEV's avatar
LDOUBLEV committed
19
20
    epoch=10
    eval_batch_step=10
LDOUBLEV's avatar
LDOUBLEV committed
21
22
23
24
elif [ ${MODE} = "whole_train_infer" ];then
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
    cd ./train_data/ && tar xf icdar2015.tar && cd ../
LDOUBLEV's avatar
LDOUBLEV committed
25
    epoch=500
LDOUBLEV's avatar
LDOUBLEV committed
26
    eval_batch_step=200
LDOUBLEV's avatar
LDOUBLEV committed
27
else
LDOUBLEV's avatar
LDOUBLEV committed
28
29
30
31
32
33
34
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
    cd ./train_data/ && tar xf icdar2015_infer.tar
    ln -s ./icdar2015_infer ./icdar2015
    cd ../
    epoch=10
    eval_batch_step=10
LDOUBLEV's avatar
LDOUBLEV committed
35
36
fi

LDOUBLEV's avatar
LDOUBLEV committed
37
38
img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45

dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser(){
    strs=$1
LDOUBLEV's avatar
LDOUBLEV committed
46
    IFS=": "
LDOUBLEV's avatar
LDOUBLEV committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
IFS=$'\n'
# The training params
train_model_list=$(func_parser "${lines[0]}")
gpu_list=$(func_parser "${lines[1]}")
auto_cast_list=$(func_parser "${lines[2]}")
slim_trainer_list=$(func_parser "${lines[3]}")
python=$(func_parser "${lines[4]}")
# inference params
inference=$(func_parser "${lines[5]}")
devices=$(func_parser "${lines[6]}")
use_mkldnn_list=$(func_parser "${lines[7]}")
cpu_threads_list=$(func_parser "${lines[8]}")
rec_batch_size_list=$(func_parser "${lines[9]}")
gpu_trt_list=$(func_parser "${lines[10]}")
gpu_precision_list=$(func_parser "${lines[11]}")
LDOUBLEV's avatar
LDOUBLEV committed
66

67
log_path=$(func_parser "${lines[13]}")
LDOUBLEV's avatar
LDOUBLEV committed
68
69

function status_check(){
LDOUBLEV's avatar
LDOUBLEV committed
70
    last_status=$1   # the exit code
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
76
77
78
79
    run_model=$2
    run_command=$3
    save_log=$4
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m $run_model successfully with command - ${run_command}!  \033[0m" | tee -a ${save_log}
    else
        echo -e "\033[33m $case failed with command - ${run_command}!  \033[0m" | tee -a ${save_log}
    fi
}
LDOUBLEV's avatar
LDOUBLEV committed
80
81
82


for train_model in ${train_model_list[*]}; do 
LDOUBLEV's avatar
LDOUBLEV committed
83
    if [ ${train_model} = "ocr_det" ];then
LDOUBLEV's avatar
LDOUBLEV committed
84
85
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
LDOUBLEV's avatar
LDOUBLEV committed
86
    elif [ ${train_model} = "ocr_rec" ];then
LDOUBLEV's avatar
LDOUBLEV committed
87
88
89
90
91
92
93
94
95
96
97
98
        model_name="rec"
        yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
    else
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
    fi
    IFS="|"
    for gpu in ${gpu_list[*]}; do
        use_gpu=True
        if [ ${gpu} = "-1" ];then
            lanuch=""
            use_gpu=False
99
            env=""
LDOUBLEV's avatar
LDOUBLEV committed
100
101
        elif [ ${#gpu} -le 1 ];then
            launch=""
102
            env="CUDA_VISIBLE_DEVICES=${gpu}"
LDOUBLEV's avatar
LDOUBLEV committed
103
104
        else
            launch="-m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu}"
105
106
107
108
            IFS=","
            array=(${gpu})
            env="CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
LDOUBLEV's avatar
LDOUBLEV committed
109
        fi
LDOUBLEV's avatar
LDOUBLEV committed
110

LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        for auto_cast in ${auto_cast_list[*]}; do 
            for slim_trainer in ${slim_trainer_list[*]}; do 
                if [ ${slim_trainer} = "norm" ]; then
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                elif [ ${slim_trainer} = "quant" ]; then
                    trainer="deploy/slim/quantization/quant.py"
                    export_model="deploy/slim/quantization/export_model.py"
                elif [ ${slim_trainer} = "prune" ]; then
                    trainer="deploy/slim/prune/sensitivity_anal.py"
                    export_model="deploy/slim/prune/export_prune_model.py"
                elif [ ${slim_trainer} = "distill" ]; then
                    trainer="deploy/slim/distill/train_dml.py"
                    export_model="deploy/slim/distill/export_distill_model.py"
                else
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                fi
                save_log=${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}
130
131
132
                command="${env} ${python}  ${launch}  ${trainer}  -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast}  Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}"
                ${env} ${python}  ${launch}  ${trainer}  -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast}  Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}
                status_check $? "${trainer}" "${command}" "${save_log}/train.log"
LDOUBLEV's avatar
LDOUBLEV committed
133

134
135
136
                command="${env} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log}"
                ${env} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log} 
                status_check $? "${trainer}" "${command}" "${save_log}/train.log"
LDOUBLEV's avatar
LDOUBLEV committed
137
               
LDOUBLEV's avatar
LDOUBLEV committed
138
139
140
                if [ "${model_name}" = "det" ]; then 
                    export rec_batch_size_list=( "1" )
                    inference="tools/infer/predict_det.py"
141
142
                    det_model_dir=${save_log}/export_inference/
                    rec_model_dir=""
LDOUBLEV's avatar
LDOUBLEV committed
143
144
                elif [ "${model_name}" = "rec" ]; then
                    inference="tools/infer/predict_rec.py"
145
146
                    rec_model_dir=${save_log}/export_inference/
                    det_model_dir=""
LDOUBLEV's avatar
LDOUBLEV committed
147
148
149
150
151
152
153
                fi
                # inference 
                for device in ${devices[*]}; do 
                    if [ ${device} = "cpu" ]; then
                        for use_mkldnn in ${use_mkldnn_list[*]}; do
                            for threads in ${cpu_threads_list[*]}; do
                                for rec_batch_size in ${rec_batch_size_list[*]}; do    
LDOUBLEV's avatar
LDOUBLEV committed
154
155
                                    save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log"
                                    command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${save_log_path}"
156
157
                                    ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${save_log_path}
                                    status_check $? "${inference}" "${command}" "${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
162
163
164
165
166
167
                                done
                            done
                        done
                    else 
                        for use_trt in ${gpu_trt_list[*]}; do
                            for precision in ${gpu_precision_list[*]}; do
                                if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                                    continue
                                fi
                                for rec_batch_size in ${rec_batch_size_list[*]}; do
LDOUBLEV's avatar
LDOUBLEV committed
168
                                    save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log"
169
170
171
                                    command="${env} ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt}  --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}"
                                    ${env} ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt}  --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}
                                    status_check $? "${inference}" "${command}" "${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
172
173
174
175
176
177
178
179
180
                                done
                            done
                        done
                    fi
                done
            done
        done
    done
done