test.sh 7.96 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
#!/bin/bash 
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
# Usage:
# bash test/test.sh ./test/params.txt 'lite_train_infer'

LDOUBLEV's avatar
LDOUBLEV committed
5
6
7
8
9
10
11
12
13
14
15
16
17
FILENAME=$1

# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
# prepare pretrained weights and dataset 
wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
if [ ${MODE} = "lite_train_infer" ];then
    # pretrain lite train data
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
    cd ./train_data/ && tar xf icdar2015_lite.tar && 
    ln -s ./icdar2015_lite ./icdar2015
    cd ../
LDOUBLEV's avatar
LDOUBLEV committed
18
19
    epoch=10
    eval_batch_step=10
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
23
elif [ ${MODE} = "whole_train_infer" ];then
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
    cd ./train_data/ && tar xf icdar2015.tar && cd ../
LDOUBLEV's avatar
LDOUBLEV committed
24
    epoch=500
LDOUBLEV's avatar
LDOUBLEV committed
25
    eval_batch_step=200
LDOUBLEV's avatar
LDOUBLEV committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
else
    echo "Do Nothing"
fi


dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
IFS=$'\n'
# The training params
train_model_list=$(func_parser "${lines[0]}")
gpu_list=$(func_parser "${lines[1]}")
auto_cast_list=$(func_parser "${lines[2]}")
slim_trainer_list=$(func_parser "${lines[3]}")
python=$(func_parser "${lines[4]}")
# inference params
inference=$(func_parser "${lines[5]}")
devices=$(func_parser "${lines[6]}")
use_mkldnn_list=$(func_parser "${lines[7]}")
cpu_threads_list=$(func_parser "${lines[8]}")
rec_batch_size_list=$(func_parser "${lines[9]}")
gpu_trt_list=$(func_parser "${lines[10]}")
gpu_precision_list=$(func_parser "${lines[11]}")
LDOUBLEV's avatar
LDOUBLEV committed
57
img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
LDOUBLEV's avatar
LDOUBLEV committed
58
59

function status_check(){
LDOUBLEV's avatar
LDOUBLEV committed
60
    last_status=$1   # the exit code
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63
64
65
66
67
68
69
70
    run_model=$2
    run_command=$3
    save_log=$4
    echo ${case3}
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m $run_model successfully with command - ${run_command}!  \033[0m" | tee -a ${save_log}
    else
        echo -e "\033[33m $case failed with command - ${run_command}!  \033[0m" | tee -a ${save_log}
    fi
}
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73


for train_model in ${train_model_list[*]}; do 
LDOUBLEV's avatar
LDOUBLEV committed
74
    if [ ${train_model} = "ocr_det" ];then
LDOUBLEV's avatar
LDOUBLEV committed
75
76
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
LDOUBLEV's avatar
LDOUBLEV committed
77
    elif [ ${train_model} = "ocr_rec" ];then
LDOUBLEV's avatar
LDOUBLEV committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        model_name="rec"
        yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
    else
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
    fi
    IFS="|"
    for gpu in ${gpu_list[*]}; do
        use_gpu=True
        if [ ${gpu} = "-1" ];then
            lanuch=""
            use_gpu=False
        elif [ ${#gpu} -le 1 ];then
            launch=""
        else
            launch="-m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu}"
        fi
LDOUBLEV's avatar
LDOUBLEV committed
95

LDOUBLEV's avatar
LDOUBLEV committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        for auto_cast in ${auto_cast_list[*]}; do 
            for slim_trainer in ${slim_trainer_list[*]}; do 
                if [ ${slim_trainer} = "norm" ]; then
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                elif [ ${slim_trainer} = "quant" ]; then
                    trainer="deploy/slim/quantization/quant.py"
                    export_model="deploy/slim/quantization/export_model.py"
                elif [ ${slim_trainer} = "prune" ]; then
                    trainer="deploy/slim/prune/sensitivity_anal.py"
                    export_model="deploy/slim/prune/export_prune_model.py"
                elif [ ${slim_trainer} = "distill" ]; then
                    trainer="deploy/slim/distill/train_dml.py"
                    export_model="deploy/slim/distill/export_distill_model.py"
                else
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                fi
                save_log=${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}
LDOUBLEV's avatar
LDOUBLEV committed
115
                command="${python}  ${launch}  ${trainer}  -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast}  Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}"
LDOUBLEV's avatar
LDOUBLEV committed
116
                ${python}  ${launch}  ${trainer}  -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast}  Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}
LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
                status_check $? "${trainer}" "${command}" "${save_log}/train.log"

                command="${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
120
                ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log} 
LDOUBLEV's avatar
LDOUBLEV committed
121
                status_check $? "${trainer}" "${command}" "${save_log}/train.log"
LDOUBLEV's avatar
LDOUBLEV committed
122
               
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
                if [ "${model_name}" = "det" ]; then 
                    export rec_batch_size_list=( "1" )
                    inference="tools/infer/predict_det.py"
126
127
                    det_model_dir=${save_log}/export_inference/
                    rec_model_dir=""
LDOUBLEV's avatar
LDOUBLEV committed
128
129
                elif [ "${model_name}" = "rec" ]; then
                    inference="tools/infer/predict_rec.py"
130
131
                    rec_model_dir=${save_log}/export_inference/
                    det_model_dir=""
LDOUBLEV's avatar
LDOUBLEV committed
132
133
134
135
136
137
138
                fi
                # inference 
                for device in ${devices[*]}; do 
                    if [ ${device} = "cpu" ]; then
                        for use_mkldnn in ${use_mkldnn_list[*]}; do
                            for threads in ${cpu_threads_list[*]}; do
                                for rec_batch_size in ${rec_batch_size_list[*]}; do    
LDOUBLEV's avatar
LDOUBLEV committed
139
140
141
142
                                    save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log"
                                    command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${save_log_path}"
                                    ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${save_log_path}
                                    status_check $? "${inference}" "${command}" "${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
143
144
145
146
147
148
149
150
151
152
                                done
                            done
                        done
                    else 
                        for use_trt in ${gpu_trt_list[*]}; do
                            for precision in ${gpu_precision_list[*]}; do
                                if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                                    continue
                                fi
                                for rec_batch_size in ${rec_batch_size_list[*]}; do
LDOUBLEV's avatar
LDOUBLEV committed
153
154
155
                                    save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log"
                                    ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt}  --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}
                                    status_check $? "${inference}" "${command}" "${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
160
161
162
163
164
                                done
                            done
                        done
                    fi
                done
            done
        done
    done
done