main.cpp 12.9 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
WenmuZhou's avatar
WenmuZhou committed
23
#include <sys/stat.h>
MissPenguin's avatar
MissPenguin committed
24
25
26
27
28
29
30
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <include/ocr_cls.h>
WenmuZhou's avatar
WenmuZhou committed
31
#include <include/ocr_det.h>
MissPenguin's avatar
MissPenguin committed
32
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
33
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
34
35
#include <sys/stat.h>

MissPenguin's avatar
MissPenguin committed
36
#include "auto_log/autolog.h"
WenmuZhou's avatar
WenmuZhou committed
37
#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
38

39
// common args
MissPenguin's avatar
MissPenguin committed
40
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
41
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
42
43
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
44
45
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
46
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
MissPenguin's avatar
MissPenguin committed
47
DEFINE_bool(benchmark, false, "Whether use benchmark.");
WenmuZhou's avatar
WenmuZhou committed
48
DEFINE_string(output, "./output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
49
DEFINE_string(image_dir, "", "Dir of input image.");
50
51
DEFINE_bool(visualize, true, "Whether show the detection results.");
// detection related
MissPenguin's avatar
MissPenguin committed
52
53
54
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
WenmuZhou's avatar
WenmuZhou committed
55
56
DEFINE_double(det_db_box_thresh, 0.6, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.5, "Threshold of det_db_unclip_ratio.");
WenmuZhou's avatar
WenmuZhou committed
57
DEFINE_bool(use_dilation, false, "Whether use the dilation on output map.");
58
DEFINE_bool(det_db_score_mode, false, "Whether use polygon score.");
MissPenguin's avatar
MissPenguin committed
59
60
61
62
63
64
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
65
DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
WenmuZhou's avatar
WenmuZhou committed
66
DEFINE_string(rec_char_dict_path, "../../ppocr/utils/ppocr_keys_v1.txt",
WenmuZhou's avatar
WenmuZhou committed
67
              "Path of dictionary.");
MissPenguin's avatar
MissPenguin committed
68
69
70
71
72

using namespace std;
using namespace cv;
using namespace PaddleOCR;

WenmuZhou's avatar
WenmuZhou committed
73
static bool PathExists(const std::string &path) {
MissPenguin's avatar
MissPenguin committed
74
75
76
77
78
79
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
WenmuZhou's avatar
WenmuZhou committed
80
#endif // !_WIN32
MissPenguin's avatar
MissPenguin committed
81
82
}

MissPenguin's avatar
MissPenguin committed
83
int main_det(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
88
  std::vector<double> time_info = {0, 0, 0};
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
89
                 FLAGS_det_db_score_mode, FLAGS_use_dilation,
WenmuZhou's avatar
WenmuZhou committed
90
                 FLAGS_use_tensorrt, FLAGS_precision);
WenmuZhou's avatar
WenmuZhou committed
91

WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
  if (!PathExists(FLAGS_output)) {
    mkdir(FLAGS_output.c_str(), 0777);
  }

WenmuZhou's avatar
WenmuZhou committed
96
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
WenmuZhou's avatar
WenmuZhou committed
97
98
99
    if (!FLAGS_benchmark) {
      cout << "The predict img: " << cv_all_img_names[i] << endl;
    }
WenmuZhou's avatar
WenmuZhou committed
100
101
102
103
104
105
106
107
108
109
110

    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
    }
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;

    det.Run(srcimg, boxes, &det_times);
WenmuZhou's avatar
WenmuZhou committed
111
    // visualization
WenmuZhou's avatar
WenmuZhou committed
112
113
114
115
    if (FLAGS_visualize) {
      std::string file_name = Utility::basename(cv_all_img_names[i]);
      Utility::VisualizeBboxes(srcimg, boxes, FLAGS_output + "/" + file_name);
    }
WenmuZhou's avatar
WenmuZhou committed
116
117
118
119
    time_info[0] += det_times[0];
    time_info[1] += det_times[1];
    time_info[2] += det_times[2];

MissPenguin's avatar
MissPenguin committed
120
    if (FLAGS_benchmark) {
121
      cout << cv_all_img_names[i] << "\t[";
WenmuZhou's avatar
WenmuZhou committed
122
      for (int n = 0; n < boxes.size(); n++) {
123
        cout << '[';
WenmuZhou's avatar
WenmuZhou committed
124
        for (int m = 0; m < boxes[n].size(); m++) {
125
126
127
128
129
130
131
132
          cout << '[' << boxes[n][m][0] << ',' << boxes[n][m][1] << "]";
          if (m != boxes[n].size() - 1) {
            cout << ',';
          }
        }
        cout << ']';
        if (n != boxes.size() - 1) {
          cout << ',';
WenmuZhou's avatar
WenmuZhou committed
133
134
        }
      }
135
      cout << ']' << endl;
MissPenguin's avatar
MissPenguin committed
136
    }
WenmuZhou's avatar
WenmuZhou committed
137
  }
MissPenguin's avatar
MissPenguin committed
138

WenmuZhou's avatar
WenmuZhou committed
139
140
141
142
143
144
145
146
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                       FLAGS_precision, time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
147

MissPenguin's avatar
MissPenguin committed
148
int main_rec(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
149
  std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
150

WenmuZhou's avatar
WenmuZhou committed
151
152
  std::string rec_char_dict_path = FLAGS_rec_char_dict_path;
  cout << "label file: " << rec_char_dict_path << endl;
MissPenguin's avatar
MissPenguin committed
153

WenmuZhou's avatar
WenmuZhou committed
154
155
  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
WenmuZhou's avatar
WenmuZhou committed
156
                     rec_char_dict_path, FLAGS_use_tensorrt, FLAGS_precision,
WenmuZhou's avatar
WenmuZhou committed
157
158
159
160
161
162
163
164
165
                     FLAGS_rec_batch_num);

  std::vector<cv::Mat> img_list;
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
166
    }
WenmuZhou's avatar
WenmuZhou committed
167
168
    img_list.push_back(srcimg);
  }
WenmuZhou's avatar
WenmuZhou committed
169
170
  std::vector<std::string> rec_texts(img_list.size(), "");
  std::vector<float> rec_text_scores(img_list.size(), 0);
WenmuZhou's avatar
WenmuZhou committed
171
  std::vector<double> rec_times;
WenmuZhou's avatar
WenmuZhou committed
172
173
174
175
176
177
  rec.Run(img_list, rec_texts, rec_text_scores, &rec_times);
  // output rec results
  for (int i = 0; i < rec_texts.size(); i++) {
    cout << "The predict img: " << cv_all_img_names[i] << "\t" << rec_texts[i]
         << "\t" << rec_text_scores[i] << endl;
  }
WenmuZhou's avatar
WenmuZhou committed
178
179
180
  time_info[0] += rec_times[0];
  time_info[1] += rec_times[1];
  time_info[2] += rec_times[2];
MissPenguin's avatar
MissPenguin committed
181

WenmuZhou's avatar
WenmuZhou committed
182
183
184
185
186
187
188
189
190
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                       FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                       time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
191

MissPenguin's avatar
MissPenguin committed
192
int main_system(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
193
194
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
195

WenmuZhou's avatar
WenmuZhou committed
196
197
198
199
  if (!PathExists(FLAGS_output)) {
    mkdir(FLAGS_output.c_str(), 0777);
  }

WenmuZhou's avatar
WenmuZhou committed
200
201
202
203
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
204
                 FLAGS_det_db_score_mode, FLAGS_use_dilation,
WenmuZhou's avatar
WenmuZhou committed
205
                 FLAGS_use_tensorrt, FLAGS_precision);
WenmuZhou's avatar
WenmuZhou committed
206
207
208
209
210
211
212
213

  Classifier *cls = nullptr;
  if (FLAGS_use_angle_cls) {
    cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                         FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                         FLAGS_cls_thresh, FLAGS_use_tensorrt, FLAGS_precision);
  }

WenmuZhou's avatar
WenmuZhou committed
214
215
  std::string rec_char_dict_path = FLAGS_rec_char_dict_path;
  cout << "label file: " << rec_char_dict_path << endl;
WenmuZhou's avatar
WenmuZhou committed
216
217
218

  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
WenmuZhou's avatar
WenmuZhou committed
219
                     rec_char_dict_path, FLAGS_use_tensorrt, FLAGS_precision,
WenmuZhou's avatar
WenmuZhou committed
220
221
222
                     FLAGS_rec_batch_num);

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
WenmuZhou's avatar
WenmuZhou committed
223
    cout << "The predict img: " << cv_all_img_names[i] << endl;
MissPenguin's avatar
MissPenguin committed
224

WenmuZhou's avatar
WenmuZhou committed
225
226
227
228
229
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
230
    }
WenmuZhou's avatar
WenmuZhou committed
231
    // det
WenmuZhou's avatar
WenmuZhou committed
232
233
234
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;
    std::vector<double> rec_times;
MissPenguin's avatar
MissPenguin committed
235

WenmuZhou's avatar
WenmuZhou committed
236
    det.Run(srcimg, boxes, &det_times);
WenmuZhou's avatar
WenmuZhou committed
237
238
239
240
    if (FLAGS_visualize) {
      std::string file_name = Utility::basename(cv_all_img_names[i]);
      Utility::VisualizeBboxes(srcimg, boxes, FLAGS_output + "/" + file_name);
    }
WenmuZhou's avatar
WenmuZhou committed
241
242
243
    time_info_det[0] += det_times[0];
    time_info_det[1] += det_times[1];
    time_info_det[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
244

WenmuZhou's avatar
WenmuZhou committed
245
    // rec
WenmuZhou's avatar
WenmuZhou committed
246
247
248
249
250
251
252
253
    std::vector<cv::Mat> img_list;
    for (int j = 0; j < boxes.size(); j++) {
      cv::Mat crop_img;
      crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
      if (cls != nullptr) {
        crop_img = cls->Run(crop_img);
      }
      img_list.push_back(crop_img);
MissPenguin's avatar
MissPenguin committed
254
    }
WenmuZhou's avatar
WenmuZhou committed
255
256
257
258
259
260
261
262
    std::vector<std::string> rec_texts(img_list.size(), "");
    std::vector<float> rec_text_scores(img_list.size(), 0);
    rec.Run(img_list, rec_texts, rec_text_scores, &rec_times);
    // output rec results
    for (int i = 0; i < rec_texts.size(); i++) {
      std::cout << i << "\t" << rec_texts[i] << "\t" << rec_text_scores[i]
                << std::endl;
    }
WenmuZhou's avatar
WenmuZhou committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    time_info_rec[0] += rec_times[0];
    time_info_rec[1] += rec_times[1];
    time_info_rec[2] += rec_times[2];
  }

  if (FLAGS_benchmark) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, time_info_det,
                           cv_all_img_names.size());
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           time_info_rec, cv_all_img_names.size());
    autolog_det.report();
    std::cout << endl;
    autolog_rec.report();
  }
  return 0;
}

void check_params(char *mode) {
  if (strcmp(mode, "det") == 0) {
    if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[det]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
291
    }
WenmuZhou's avatar
WenmuZhou committed
292
293
294
295
296
297
298
  }
  if (strcmp(mode, "rec") == 0) {
    if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[rec]: ./ppocr "
                   "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
299
    }
WenmuZhou's avatar
WenmuZhou committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
  }
  if (strcmp(mode, "system") == 0) {
    if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() ||
         FLAGS_image_dir.empty()) ||
        (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
      std::cout << "Usage[system without angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      std::cout << "Usage[system with angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--use_angle_cls=true "
                << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
316
    }
WenmuZhou's avatar
WenmuZhou committed
317
318
319
320
321
322
  }
  if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" &&
      FLAGS_precision != "int8") {
    cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
    exit(1);
  }
MissPenguin's avatar
MissPenguin committed
323
324
}

MissPenguin's avatar
MissPenguin committed
325
int main(int argc, char **argv) {
WenmuZhou's avatar
WenmuZhou committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
  if (argc <= 1 ||
      (strcmp(argv[1], "det") != 0 && strcmp(argv[1], "rec") != 0 &&
       strcmp(argv[1], "system") != 0)) {
    std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
    return -1;
  }
  std::cout << "mode: " << argv[1] << endl;

  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  check_params(argv[1]);

  if (!PathExists(FLAGS_image_dir)) {
    std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir
              << endl;
    exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(FLAGS_image_dir, cv_all_img_names);
  std::cout << "total images num: " << cv_all_img_names.size() << endl;
MissPenguin's avatar
MissPenguin committed
347

WenmuZhou's avatar
WenmuZhou committed
348
349
350
351
352
353
354
355
356
  if (strcmp(argv[1], "det") == 0) {
    return main_det(cv_all_img_names);
  }
  if (strcmp(argv[1], "rec") == 0) {
    return main_rec(cv_all_img_names);
  }
  if (strcmp(argv[1], "system") == 0) {
    return main_system(cv_all_img_names);
  }
MissPenguin's avatar
MissPenguin committed
357
}