rec_img_aug.py 16.5 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

LDOUBLEV's avatar
LDOUBLEV committed
15
16
17
import math
import cv2
import numpy as np
tink2123's avatar
tink2123 committed
18
import random
Topdu's avatar
Topdu committed
19
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
20
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
LDOUBLEV's avatar
LDOUBLEV committed
21

WenmuZhou's avatar
WenmuZhou committed
22
23

class RecAug(object):
littletomatodonkey's avatar
littletomatodonkey committed
24
    def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
zhoujun's avatar
zhoujun committed
25
        self.use_tia = use_tia
littletomatodonkey's avatar
littletomatodonkey committed
26
        self.aug_prob = aug_prob
WenmuZhou's avatar
WenmuZhou committed
27
28
29

    def __call__(self, data):
        img = data['image']
littletomatodonkey's avatar
littletomatodonkey committed
30
        img = warp(img, 10, self.use_tia, self.aug_prob)
WenmuZhou's avatar
WenmuZhou committed
31
32
33
34
        data['image'] = img
        return data


zhoujun's avatar
zhoujun committed
35
36
37
38
39
40
41
42
43
44
45
class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img(img, self.image_shape)
        data['image'] = norm_img
        return data


Topdu's avatar
Topdu committed
46
class NRTRRecResizeImg(object):
Topdu's avatar
Topdu committed
47
    def __init__(self, image_shape, resize_type, padding=False, **kwargs):
Topdu's avatar
Topdu committed
48
        self.image_shape = image_shape
Topdu's avatar
Topdu committed
49
        self.resize_type = resize_type
Topdu's avatar
Topdu committed
50
        self.padding = padding
Topdu's avatar
Topdu committed
51
52
53

    def __call__(self, data):
        img = data['image']
Topdu's avatar
Topdu committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        image_shape = self.image_shape
        if self.padding:
            imgC, imgH, imgW = image_shape
            # todo: change to 0 and modified image shape
            h = img.shape[0]
            w = img.shape[1]
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
            norm_img = np.expand_dims(resized_image, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            resized_image = norm_img.astype(np.float32) / 128. - 1.
            padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            padding_im[:, :, 0:resized_w] = resized_image
            data['image'] = padding_im
            return data
Topdu's avatar
Topdu committed
74
75
76
77
78
79
80
        if self.resize_type == 'PIL':
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
            img = np.array(img)
        if self.resize_type == 'OpenCV':
            img = cv2.resize(img, self.image_shape)
        norm_img = np.expand_dims(img, -1)
Topdu's avatar
Topdu committed
81
82
83
84
        norm_img = norm_img.transpose((2, 0, 1))
        data['image'] = norm_img.astype(np.float32) / 128. - 1.
        return data

zhoujun's avatar
zhoujun committed
85

WenmuZhou's avatar
WenmuZhou committed
86
87
88
89
class RecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
tink2123's avatar
tink2123 committed
90
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
tink2123's avatar
tink2123 committed
91
                 padding=True,
WenmuZhou's avatar
WenmuZhou committed
92
93
94
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
tink2123's avatar
tink2123 committed
95
        self.character_dict_path = character_dict_path
tink2123's avatar
tink2123 committed
96
        self.padding = padding
WenmuZhou's avatar
WenmuZhou committed
97
98
99

    def __call__(self, data):
        img = data['image']
tink2123's avatar
tink2123 committed
100
        if self.infer_mode and self.character_dict_path is not None:
WenmuZhou's avatar
WenmuZhou committed
101
102
            norm_img = resize_norm_img_chinese(img, self.image_shape)
        else:
tink2123's avatar
tink2123 committed
103
            norm_img = resize_norm_img(img, self.image_shape, self.padding)
tink2123's avatar
tink2123 committed
104
105
106
107
        data['image'] = norm_img
        return data


tink2123's avatar
tink2123 committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
class SRNRecResizeImg(object):
    def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
        self.image_shape = image_shape
        self.num_heads = num_heads
        self.max_text_length = max_text_length

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img_srn(img, self.image_shape)
        data['image'] = norm_img
        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)

        data['encoder_word_pos'] = encoder_word_pos
        data['gsrm_word_pos'] = gsrm_word_pos
        data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
        data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
        return data


andyjpaddle's avatar
andyjpaddle committed
128
129
130
131
132
133
134
class SARRecResizeImg(object):
    def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
        self.image_shape = image_shape
        self.width_downsample_ratio = width_downsample_ratio

    def __call__(self, data):
        img = data['image']
tink2123's avatar
tink2123 committed
135
136
        norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
            img, self.image_shape, self.width_downsample_ratio)
andyjpaddle's avatar
andyjpaddle committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        data['image'] = norm_img
        data['resized_shape'] = resize_shape
        data['pad_shape'] = pad_shape
        data['valid_ratio'] = valid_ratio
        return data


def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
    imgC, imgH, imgW_min, imgW_max = image_shape
    h = img.shape[0]
    w = img.shape[1]
    valid_ratio = 1.0
    # make sure new_width is an integral multiple of width_divisor.
    width_divisor = int(1 / width_downsample_ratio)
    # resize
    ratio = w / float(h)
    resize_w = math.ceil(imgH * ratio)
    if resize_w % width_divisor != 0:
        resize_w = round(resize_w / width_divisor) * width_divisor
    if imgW_min is not None:
        resize_w = max(imgW_min, resize_w)
    if imgW_max is not None:
        valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
        resize_w = min(imgW_max, resize_w)
    resized_image = cv2.resize(img, (resize_w, imgH))
    resized_image = resized_image.astype('float32')
    # norm 
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resize_shape = resized_image.shape
    padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
    padding_im[:, :, 0:resize_w] = resized_image
    pad_shape = padding_im.shape

    return padding_im, resize_shape, pad_shape, valid_ratio


tink2123's avatar
tink2123 committed
179
def resize_norm_img(img, image_shape, padding=True):
LDOUBLEV's avatar
LDOUBLEV committed
180
181
182
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
tink2123's avatar
tink2123 committed
183
184
185
    if not padding:
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
LDOUBLEV's avatar
LDOUBLEV committed
186
187
        resized_w = imgW
    else:
tink2123's avatar
tink2123 committed
188
189
190
191
192
193
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
LDOUBLEV's avatar
LDOUBLEV committed
194
195
196
197
198
199
200
201
202
203
204
205
206
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


tink2123's avatar
tink2123 committed
207
208
209
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
tink2123's avatar
tink2123 committed
210
    max_wh_ratio = imgW * 1.0 / imgH
tink2123's avatar
tink2123 committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(32 * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


tink2123's avatar
tink2123 committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)


def srn_other_inputs(image_shape, num_heads, max_text_length):

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')

    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [num_heads, 1, 1]) * [-1e9]

    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [num_heads, 1, 1]) * [-1e9]

    return [
        encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]


tink2123's avatar
tink2123 committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


tink2123's avatar
tink2123 committed
316
def jitter(img):
tink2123's avatar
tink2123 committed
317
    """
tink2123's avatar
tink2123 committed
318
    jitter
tink2123's avatar
tink2123 committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
333
334
335
    """
    Gasuss noise
    """
tink2123's avatar
tink2123 committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
352
    top_crop = min(top_crop, h - 1)
tink2123's avatar
tink2123 committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

zhoujun's avatar
zhoujun committed
367
    def __init__(self, use_tia):
tink2123's avatar
tink2123 committed
368
369
370
371
372
373
374
375
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE
zhoujun's avatar
zhoujun committed
376
        self.use_tia = use_tia
tink2123's avatar
tink2123 committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

zhoujun's avatar
zhoujun committed
393
394
395
        self.perspective = self.use_tia
        self.stretch = self.use_tia
        self.distort = self.use_tia
WenmuZhou's avatar
WenmuZhou committed
396

tink2123's avatar
tink2123 committed
397
398
399
400
        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
tink2123's avatar
tink2123 committed
401
        self.jitter = True
tink2123's avatar
tink2123 committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
452
    list_dst = np.array([dst1, dst2, dst3, dst4])
tink2123's avatar
tink2123 committed
453
454
455
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
456
457
458
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

tink2123's avatar
tink2123 committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz


littletomatodonkey's avatar
littletomatodonkey committed
491
def warp(img, ang, use_tia=True, prob=0.4):
tink2123's avatar
tink2123 committed
492
493
494
495
    """
    warp
    """
    h, w, _ = img.shape
zhoujun's avatar
zhoujun committed
496
    config = Config(use_tia=use_tia)
tink2123's avatar
tink2123 committed
497
498
499
    config.make(w, h, ang)
    new_img = img

WenmuZhou's avatar
WenmuZhou committed
500
501
502
503
504
505
506
507
508
509
    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_distort(new_img, random.randint(3, 6))

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_stretch(new_img, random.randint(3, 6))

tink2123's avatar
tink2123 committed
510
    if config.perspective:
WenmuZhou's avatar
WenmuZhou committed
511
512
513
        if random.random() <= prob:
            new_img = tia_perspective(new_img)

tink2123's avatar
tink2123 committed
514
515
    if config.crop:
        img_height, img_width = img.shape[0:2]
WenmuZhou's avatar
WenmuZhou committed
516
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
tink2123's avatar
tink2123 committed
517
            new_img = get_crop(new_img)
WenmuZhou's avatar
WenmuZhou committed
518

tink2123's avatar
tink2123 committed
519
    if config.blur:
WenmuZhou's avatar
WenmuZhou committed
520
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
521
522
            new_img = blur(new_img)
    if config.color:
WenmuZhou's avatar
WenmuZhou committed
523
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
524
            new_img = cvtColor(new_img)
tink2123's avatar
tink2123 committed
525
526
    if config.jitter:
        new_img = jitter(new_img)
tink2123's avatar
tink2123 committed
527
    if config.noise:
WenmuZhou's avatar
WenmuZhou committed
528
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
529
530
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
WenmuZhou's avatar
WenmuZhou committed
531
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
532
533
            new_img = 255 - new_img
    return new_img