rec_img_aug.py 10.7 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
28
29
30
31

import math
import cv2
import numpy as np
tink2123's avatar
tink2123 committed
32
import random
LDOUBLEV's avatar
LDOUBLEV committed
33

WenmuZhou's avatar
WenmuZhou committed
34
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
LDOUBLEV's avatar
LDOUBLEV committed
35

WenmuZhou's avatar
WenmuZhou committed
36
37

class RecAug(object):
zhoujun's avatar
zhoujun committed
38
39
    def __init__(self, use_tia=True, **kwargsz):
        self.use_tia = use_tia
WenmuZhou's avatar
WenmuZhou committed
40
41
42

    def __call__(self, data):
        img = data['image']
zhoujun's avatar
zhoujun committed
43
        img = warp(img, 10, self.use_tia)
WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
        data['image'] = img
        return data


zhoujun's avatar
zhoujun committed
48
49
50
51
52
53
54
55
56
57
58
class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img(img, self.image_shape)
        data['image'] = norm_img
        return data


WenmuZhou's avatar
WenmuZhou committed
59
60
61
62
63
64
65
66
67
68
69
70
class RecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
                 character_type='ch',
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
        self.character_type = character_type

    def __call__(self, data):
        img = data['image']
dyning's avatar
dyning committed
71
        if self.infer_mode and self.character_type == "ch":
WenmuZhou's avatar
WenmuZhou committed
72
73
74
75
76
            norm_img = resize_norm_img_chinese(img, self.image_shape)
        else:
            norm_img = resize_norm_img(img, self.image_shape)
        data['image'] = norm_img
        return data
LDOUBLEV's avatar
LDOUBLEV committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101


def resize_norm_img(img, image_shape):
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


tink2123's avatar
tink2123 committed
102
103
104
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
tink2123's avatar
tink2123 committed
105
    max_wh_ratio = 0
tink2123's avatar
tink2123 committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(32 * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


tink2123's avatar
tink2123 committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


tink2123's avatar
tink2123 committed
157
def jitter(img):
tink2123's avatar
tink2123 committed
158
    """
tink2123's avatar
tink2123 committed
159
    jitter
tink2123's avatar
tink2123 committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
174
175
176
    """
    Gasuss noise
    """
tink2123's avatar
tink2123 committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
193
    top_crop = min(top_crop, h - 1)
tink2123's avatar
tink2123 committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

zhoujun's avatar
zhoujun committed
208
    def __init__(self, use_tia):
tink2123's avatar
tink2123 committed
209
210
211
212
213
214
215
216
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE
zhoujun's avatar
zhoujun committed
217
        self.use_tia = use_tia
tink2123's avatar
tink2123 committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

zhoujun's avatar
zhoujun committed
234
235
236
        self.perspective = self.use_tia
        self.stretch = self.use_tia
        self.distort = self.use_tia
WenmuZhou's avatar
WenmuZhou committed
237

tink2123's avatar
tink2123 committed
238
239
240
241
        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
tink2123's avatar
tink2123 committed
242
        self.jitter = True
tink2123's avatar
tink2123 committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
293
    list_dst = np.array([dst1, dst2, dst3, dst4])
tink2123's avatar
tink2123 committed
294
295
296
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
297
298
299
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

tink2123's avatar
tink2123 committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz


zhoujun's avatar
zhoujun committed
332
def warp(img, ang, use_tia=True):
tink2123's avatar
tink2123 committed
333
334
335
336
    """
    warp
    """
    h, w, _ = img.shape
zhoujun's avatar
zhoujun committed
337
    config = Config(use_tia=use_tia)
tink2123's avatar
tink2123 committed
338
339
340
    config.make(w, h, ang)
    new_img = img

WenmuZhou's avatar
WenmuZhou committed
341
342
343
344
345
346
347
348
349
350
351
352
    prob = 0.4

    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_distort(new_img, random.randint(3, 6))

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_stretch(new_img, random.randint(3, 6))

tink2123's avatar
tink2123 committed
353
    if config.perspective:
WenmuZhou's avatar
WenmuZhou committed
354
355
356
        if random.random() <= prob:
            new_img = tia_perspective(new_img)

tink2123's avatar
tink2123 committed
357
358
    if config.crop:
        img_height, img_width = img.shape[0:2]
WenmuZhou's avatar
WenmuZhou committed
359
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
tink2123's avatar
tink2123 committed
360
            new_img = get_crop(new_img)
WenmuZhou's avatar
WenmuZhou committed
361

tink2123's avatar
tink2123 committed
362
    if config.blur:
WenmuZhou's avatar
WenmuZhou committed
363
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
364
365
            new_img = blur(new_img)
    if config.color:
WenmuZhou's avatar
WenmuZhou committed
366
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
367
            new_img = cvtColor(new_img)
tink2123's avatar
tink2123 committed
368
369
    if config.jitter:
        new_img = jitter(new_img)
tink2123's avatar
tink2123 committed
370
    if config.noise:
WenmuZhou's avatar
WenmuZhou committed
371
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
372
373
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
WenmuZhou's avatar
WenmuZhou committed
374
        if random.random() <= prob:
tink2123's avatar
tink2123 committed
375
376
            new_img = 255 - new_img
    return new_img