magic_model.py 30.7 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
import json
kernel.h@qq.com's avatar
kernel.h@qq.com committed
2

3
from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
4
5
6
                                    bbox_relative_pos, box_area, calculate_iou,
                                    calculate_overlap_area_in_bbox1_area_ratio,
                                    get_overlap_area)
7
from magic_pdf.libs.commons import fitz, join_path
liukaiwen's avatar
liukaiwen committed
8
from magic_pdf.libs.coordinate_transform import get_scale_ratio
9
from magic_pdf.libs.local_math import float_gt
liukaiwen's avatar
liukaiwen committed
10
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
11
12
13
from magic_pdf.libs.ocr_content_type import CategoryId, ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
liukaiwen's avatar
liukaiwen committed
14

15
CAPATION_OVERLAP_AREA_RATIO = 0.6
16
MERGE_BOX_OVERLAP_AREA_RATIO = 1.1
liukaiwen's avatar
liukaiwen committed
17

许瑞's avatar
许瑞 committed
18

liukaiwen's avatar
liukaiwen committed
19
class MagicModel:
20
    """每个函数没有得到元素的时候返回空list."""
liukaiwen's avatar
liukaiwen committed
21
22
23

    def __fix_axis(self):
        for model_page_info in self.__model_list:
24
            need_remove_list = []
25
            page_no = model_page_info['page_info']['page_no']
liukaiwen's avatar
liukaiwen committed
26
27
28
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
29
            layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
30
            for layout_det in layout_dets:
31

32
                if layout_det.get('bbox') is not None:
33
                    # 兼容直接输出bbox的模型数据,如paddle
34
                    x0, y0, x1, y1 = layout_det['bbox']
35
36
                else:
                    # 兼容直接输出poly的模型数据,如xxx
37
                    x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
38

liukaiwen's avatar
liukaiwen committed
39
40
41
42
43
44
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
45
                layout_det['bbox'] = bbox
46
47
                # 删除高度或者宽度小于等于0的spans
                if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
liukaiwen's avatar
liukaiwen committed
48
49
50
51
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

52
    def __fix_by_remove_low_confidence(self):
53
54
        for model_page_info in self.__model_list:
            need_remove_list = []
55
            layout_dets = model_page_info['layout_dets']
56
            for layout_det in layout_dets:
57
                if layout_det['score'] <= 0.05:
58
59
60
61
62
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
63

64
65
66
    def __fix_by_remove_high_iou_and_low_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
67
            layout_dets = model_page_info['layout_dets']
68
69
70
71
            for layout_det1 in layout_dets:
                for layout_det2 in layout_dets:
                    if layout_det1 == layout_det2:
                        continue
72
                    if layout_det1['category_id'] in [
blue's avatar
blue committed
73
74
75
76
77
78
79
80
81
82
                        0,
                        1,
                        2,
                        3,
                        4,
                        5,
                        6,
                        7,
                        8,
                        9,
83
                    ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
blue's avatar
blue committed
84
                        if (
85
                            calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
blue's avatar
blue committed
86
87
                            > 0.9
                        ):
88
                            if layout_det1['score'] < layout_det2['score']:
89
90
91
92
93
94
95
96
97
98
99
100
101
                                layout_det_need_remove = layout_det1
                            else:
                                layout_det_need_remove = layout_det2

                            if layout_det_need_remove not in need_remove_list:
                                need_remove_list.append(layout_det_need_remove)
                        else:
                            continue
                    else:
                        continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

liukaiwen's avatar
liukaiwen committed
102
    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
103
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
104
        self.__docs = docs
blue's avatar
blue committed
105
        """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
kernel.h@qq.com's avatar
kernel.h@qq.com committed
106
        self.__fix_axis()
blue's avatar
blue committed
107
        """删除置信度特别低的模型数据(<0.05),提高质量"""
108
        self.__fix_by_remove_low_confidence()
blue's avatar
blue committed
109
        """删除高iou(>0.9)数据中置信度较低的那个"""
110
        self.__fix_by_remove_high_iou_and_low_confidence()
111
112
        self.__fix_footnote()

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def _bbox_distance(self, bbox1, bbox2):
        left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
        flags = [left, right, bottom, top]
        count = sum([1 if v else 0 for v in flags])
        if count > 1:
            return float('inf')
        if left or right:
            l1 = bbox1[3] - bbox1[1]
            l2 = bbox2[3] - bbox2[1]
            minL, maxL = min(l1, l2), max(l1, l2)
            if (maxL - minL) / minL > 0.5:
                return float('inf')
        if bottom or top:
            l1 = bbox1[2] - bbox1[0]
            l2 = bbox2[2] - bbox2[0]
            minL, maxL = min(l1, l2), max(l1, l2)
            if (maxL - minL) / minL > 0.5:
                return float('inf')
        return bbox_distance(bbox1, bbox2)

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def __fix_footnote(self):
        # 3: figure, 5: table, 7: footnote
        for model_page_info in self.__model_list:
            footnotes = []
            figures = []
            tables = []

            for obj in model_page_info['layout_dets']:
                if obj['category_id'] == 7:
                    footnotes.append(obj)
                elif obj['category_id'] == 3:
                    figures.append(obj)
                elif obj['category_id'] == 5:
                    tables.append(obj)
                if len(footnotes) * len(figures) == 0:
                    continue
149
150
151
152
153
154
155
156
157
158
159
160
            dis_figure_footnote = {}
            dis_table_footnote = {}

            for i in range(len(footnotes)):
                for j in range(len(figures)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], figures[j]['bbox']
                                ),
161
162
                            )
                        )
163
164
165
166
                    )
                    if pos_flag_count > 1:
                        continue
                    dis_figure_footnote[i] = min(
167
                        self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
168
169
170
171
172
173
174
175
176
177
178
                        dis_figure_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                for j in range(len(tables)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], tables[j]['bbox']
                                ),
179
180
                            )
                        )
181
182
183
                    )
                    if pos_flag_count > 1:
                        continue
184

185
                    dis_table_footnote[i] = min(
186
                        self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
187
188
189
190
191
192
193
                        dis_table_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                if i not in dis_figure_footnote:
                    continue
                if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
                    footnotes[i]['category_id'] = CategoryId.ImageFootnote
liukaiwen's avatar
liukaiwen committed
194
195
196
197
198
199
200
201

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
202
                if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
liukaiwen's avatar
liukaiwen committed
203
204
205
206
                    keep[i] = False
        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
207
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
208
    ):
209
210
        """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
        只能属于一个 subject."""
liukaiwen's avatar
liukaiwen committed
211
        ret = []
212
        MAX_DIS_OF_POINT = 10**9 + 7
213
214
215
216
217
        """
        subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
        筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
        再求出筛选出的 subjects 和 object 的最短距离
        """
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        def search_overlap_between_boxes(
            subject_idx, object_idx
        ):
            idxes = [subject_idx, object_idx]
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]

            merged_bbox = [
                min(x0s),
                min(y0s),
                max(x1s),
                max(y1s),
            ]
            ratio = 0

            other_objects = list(
                map(
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
                    filter(
                        lambda x: x['category_id']
                        not in (object_category_id, subject_category_id),
                        self.__model_list[page_no]['layout_dets'],
                    ),
                )
            )
            for other_object in other_objects:
                ratio = max(
                    ratio,
                    get_overlap_area(
                        merged_bbox, other_object['bbox']
                    ) * 1.0 / box_area(all_bboxes[object_idx]['bbox'])
                )
                if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    break

            return ratio
liukaiwen's avatar
liukaiwen committed
256

许瑞's avatar
许瑞 committed
257
        def may_find_other_nearest_bbox(subject_idx, object_idx):
258
            ret = float('inf')
259

许瑞's avatar
许瑞 committed
260
            x0 = min(
261
                all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
262
263
            )
            y0 = min(
264
                all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
265
266
            )
            x1 = max(
267
                all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
许瑞's avatar
许瑞 committed
268
269
            )
            y1 = max(
270
                all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
许瑞's avatar
许瑞 committed
271
            )
许瑞's avatar
许瑞 committed
272

许瑞's avatar
许瑞 committed
273
            object_area = abs(
274
                all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
275
            ) * abs(
276
                all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
277
            )
许瑞's avatar
许瑞 committed
278
279

            for i in range(len(all_bboxes)):
许瑞's avatar
许瑞 committed
280
281
                if (
                    i == subject_idx
282
                    or all_bboxes[i]['category_id'] != subject_category_id
许瑞's avatar
许瑞 committed
283
                ):
许瑞's avatar
许瑞 committed
284
                    continue
285
286
                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
                    all_bboxes[i]['bbox'], [x0, y0, x1, y1]
许瑞's avatar
许瑞 committed
287
                ):
288

许瑞's avatar
许瑞 committed
289
                    i_area = abs(
290
291
                        all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
                    ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
许瑞's avatar
许瑞 committed
292
                    if i_area >= object_area:
293
                        ret = min(float('inf'), dis[i][object_idx])
294

许瑞's avatar
许瑞 committed
295
296
            return ret

blue's avatar
blue committed
297
        def expand_bbbox(idxes):
298
299
300
301
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
blue's avatar
blue committed
302
303
            return min(x0s), min(y0s), max(x1s), max(y1s)

liukaiwen's avatar
liukaiwen committed
304
305
306
        subjects = self.__reduct_overlap(
            list(
                map(
307
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
308
                    filter(
309
310
                        lambda x: x['category_id'] == subject_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
311
312
313
314
315
316
317
318
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
319
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
320
                    filter(
321
322
                        lambda x: x['category_id'] == object_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
323
324
325
326
327
328
                    ),
                )
            )
        )
        subject_object_relation_map = {}

许瑞's avatar
许瑞 committed
329
        subjects.sort(
330
            key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
许瑞's avatar
许瑞 committed
331
        )  # get the distance !
liukaiwen's avatar
liukaiwen committed
332
333
334
335

        all_bboxes = []

        for v in subjects:
许瑞's avatar
许瑞 committed
336
337
            all_bboxes.append(
                {
338
339
340
                    'category_id': subject_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
341
342
                }
            )
liukaiwen's avatar
liukaiwen committed
343
344

        for v in objects:
许瑞's avatar
许瑞 committed
345
346
            all_bboxes.append(
                {
347
348
349
                    'category_id': object_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
350
351
                }
            )
liukaiwen's avatar
liukaiwen committed
352
353
354
355
356
357
358

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
359
360
                    all_bboxes[i]['category_id'] == subject_category_id
                    and all_bboxes[j]['category_id'] == subject_category_id
liukaiwen's avatar
liukaiwen committed
361
362
363
                ):
                    continue

364
365
366
367
368
369
370
371
372
                subject_idx, object_idx = i, j
                if all_bboxes[j]['category_id'] == subject_category_id:
                    subject_idx, object_idx = j, i

                if search_overlap_between_boxes(subject_idx, object_idx) >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    dis[i][j] = float('inf')
                    dis[j][i] = dis[i][j]
                    continue

373
                dis[i][j] = self._bbox_distance(all_bboxes[i]['bbox'], all_bboxes[j]['bbox'])
liukaiwen's avatar
liukaiwen committed
374
375
376
377
378
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
379
            if all_bboxes[i]['category_id'] != subject_category_id:
liukaiwen's avatar
liukaiwen committed
380
381
382
383
384
385
386
387
388
389
390
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
391
                                all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
392
393
394
395
396
397
398
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
399
                    all_bboxes[j]['category_id'] != object_category_id
400
401
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
402
403
                ):
                    continue
blue's avatar
blue committed
404
                left, right, _, _ = bbox_relative_pos(
405
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
blue's avatar
blue committed
406
                )  # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
许瑞's avatar
许瑞 committed
407
                if left or right:
408
                    one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
许瑞's avatar
许瑞 committed
409
                else:
410
                    one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
许瑞's avatar
许瑞 committed
411
412
                if dis[i][j] > one_way_dis:
                    continue
liukaiwen's avatar
liukaiwen committed
413
414
415
416
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
417
418
419
420
                """
                bug: 离该subject 最近的 object 可能跨越了其它的 subject。
                比如 [this subect] [some sbuject] [the nearest object of subject]
                """
许瑞's avatar
许瑞 committed
421
                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
许瑞's avatar
许瑞 committed
422

许瑞's avatar
许瑞 committed
423
424
                    candidates.append(arr[0][1])
                    seen.add(arr[0][1])
liukaiwen's avatar
liukaiwen committed
425
426
427
428
429
430
431
432
433
434

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
435
                                    all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
liukaiwen's avatar
liukaiwen committed
436
437
438
439
440
441
442
443
444
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
445
                        all_bboxes[k]['category_id'] != object_category_id
446
447
448
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
许瑞's avatar
许瑞 committed
449
                        or dis[j][k] > dis[i][j]
liukaiwen's avatar
liukaiwen committed
450
451
                    ):
                        continue
许瑞's avatar
许瑞 committed
452

liukaiwen's avatar
liukaiwen committed
453
                    is_nearest = True
454
455
                    for ni in range(i + 1, N):
                        if ni in (j, k) or ni in used or ni in seen:
liukaiwen's avatar
liukaiwen committed
456
457
                            continue

458
                        if not float_gt(dis[ni][k], dis[j][k]):
liukaiwen's avatar
liukaiwen committed
459
460
461
462
                            is_nearest = False
                            break

                    if is_nearest:
blue's avatar
blue committed
463
                        nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
464
                        n_dis = self._bbox_distance(
465
466
                            all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
                        )
blue's avatar
blue committed
467
468
                        if float_gt(dis[i][j], n_dis):
                            continue
liukaiwen's avatar
liukaiwen committed
469
470
471
472
473
474
475
476
477
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
blue's avatar
blue committed
478
            ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
479
            ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
liukaiwen's avatar
liukaiwen committed
480
481
482
483
484
485
486
487
488
489
490
491
492

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
许瑞's avatar
许瑞 committed
493
494
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
495
                            all_bboxes[idx]['bbox'], bbox
许瑞's avatar
许瑞 committed
496
497
498
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
499
500
501
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
502
503
504
505
                    embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
liukaiwen's avatar
liukaiwen committed
506
507
508
509
510
511
512
513
514
515
516
517
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
许瑞's avatar
许瑞 committed
518
519
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
520
                            all_bboxes[j]['bbox'], caption_bbox
许瑞's avatar
许瑞 committed
521
522
523
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
524
525
526
527
528
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
529
530
531
                'subject_body': all_bboxes[i]['bbox'],
                'all': all_bboxes[i]['bbox'],
                'score': all_bboxes[i]['score'],
liukaiwen's avatar
liukaiwen committed
532
533
534
535
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
536
                    [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
537
538
                )
                y0 = min(
539
                    [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
540
541
                )
                x1 = max(
542
                    [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
543
544
                )
                y1 = max(
545
                    [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
546
                )
547
548
549
550
551
552
                result['object_body'] = [x0, y0, x1, y1]
                result['all'] = [
                    min(x0, all_bboxes[i]['bbox'][0]),
                    min(y0, all_bboxes[i]['bbox'][1]),
                    max(x1, all_bboxes[i]['bbox'][2]),
                    max(y1, all_bboxes[i]['bbox'][3]),
liukaiwen's avatar
liukaiwen committed
553
554
555
556
557
558
559
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
560
                total_subject_object_dis += self._bbox_distance(
561
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
562
563
564
565
566
567
568
569
570
571
572
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
573
            if all_bboxes[i]['category_id'] != object_category_id or i in used:
liukaiwen's avatar
liukaiwen committed
574
575
576
577
                continue
            candidates = []
            for j in range(N):
                if (
578
                    all_bboxes[j]['category_id'] != subject_category_id
579
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
580
581
582
583
584
585
586
587
588
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

blue's avatar
blue committed
589
    def get_imgs(self, page_no: int):
590
591
592
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        with_footnotes, _ = self.__tie_up_category_by_distance(
            page_no, 3, CategoryId.ImageFootnote
blue's avatar
blue committed
593
        )
594
595
596
597
598
599
600
601
602
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
                'score': with_captions[i]['score'],
                'img_caption_bbox': with_captions[i].get('object_body', None),
                'img_body_bbox': with_captions[i]['subject_body'],
                'img_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
603
            }
604
605
606
607
608
609
610
611

            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
            ret.append(record)
        return ret
liukaiwen's avatar
liukaiwen committed
612
613

    def get_tables(
614
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
615
616
617
618
619
620
621
622
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
623
624
625
626
                'score': with_captions[i]['score'],
                'table_caption_bbox': with_captions[i].get('object_body', None),
                'table_body_bbox': with_captions[i]['subject_body'],
                'table_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
627
628
            }

629
630
631
632
633
            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
liukaiwen's avatar
liukaiwen committed
634
635
636
637
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
638
        inline_equations = self.__get_blocks_by_type(
639
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
640
641
        )
        interline_equations = self.__get_blocks_by_type(
642
            ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
643
644
645
646
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
664
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
665
        for layout_det in layout_dets:
666
            if layout_det['category_id'] == '15':
liukaiwen's avatar
liukaiwen committed
667
                span = {
668
669
                    'bbox': layout_det['bbox'],
                    'content': layout_det['text'],
liukaiwen's avatar
liukaiwen committed
670
671
672
673
674
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
675

676
677
678
679
680
681
        def remove_duplicate_spans(spans):
            new_spans = []
            for span in spans:
                if not any(span == existing_span for existing_span in new_spans):
                    new_spans.append(span)
            return new_spans
blue's avatar
blue committed
682

liukaiwen's avatar
liukaiwen committed
683
684
        all_spans = []
        model_page_info = self.__model_list[page_no]
685
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
686
687
688
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
689
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
690
691
692
693
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
694
            category_id = layout_det['category_id']
liukaiwen's avatar
liukaiwen committed
695
            if category_id in allow_category_id_list:
696
                span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
liukaiwen's avatar
liukaiwen committed
697
                if category_id == 3:
698
                    span['type'] = ContentType.Image
liukaiwen's avatar
liukaiwen committed
699
                elif category_id == 5:
700
                    # 获取table模型结果
701
702
                    latex = layout_det.get('latex', None)
                    html = layout_det.get('html', None)
703
                    if latex:
704
                        span['latex'] = latex
705
                    elif html:
706
707
                        span['html'] = html
                    span['type'] = ContentType.Table
liukaiwen's avatar
liukaiwen committed
708
                elif category_id == 13:
709
710
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InlineEquation
liukaiwen's avatar
liukaiwen committed
711
                elif category_id == 14:
712
713
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InterlineEquation
liukaiwen's avatar
liukaiwen committed
714
                elif category_id == 15:
715
716
                    span['content'] = layout_det['text']
                    span['type'] = ContentType.Text
liukaiwen's avatar
liukaiwen committed
717
                all_spans.append(span)
718
        return remove_duplicate_spans(all_spans)
liukaiwen's avatar
liukaiwen committed
719
720
721
722
723
724
725
726
727

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
        page = self.__docs[page_no]
        # 获取当前页的宽高
        page_w = page.rect.width
        page_h = page.rect.height
        return page_w, page_h

728
729
730
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
731
732
        blocks = []
        for page_dict in self.__model_list:
733
734
735
            layout_dets = page_dict.get('layout_dets', [])
            page_info = page_dict.get('page_info', {})
            page_number = page_info.get('page_no', -1)
liukaiwen's avatar
liukaiwen committed
736
737
738
            if page_no != page_number:
                continue
            for item in layout_dets:
739
740
                category_id = item.get('category_id', -1)
                bbox = item.get('bbox', None)
liukaiwen's avatar
liukaiwen committed
741

liukaiwen's avatar
liukaiwen committed
742
                if category_id == type:
743
                    block = {
744
745
                        'bbox': bbox,
                        'score': item.get('score'),
746
                    }
liukaiwen's avatar
liukaiwen committed
747
748
749
750
751
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

许瑞's avatar
许瑞 committed
752
753
754
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

755

756
757
if __name__ == '__main__':
    drw = DiskReaderWriter(r'D:/project/20231108code-clean')
liukaiwen's avatar
liukaiwen committed
758
    if 0:
759
760
        pdf_file_path = r'linshixuqiu\19983-00.pdf'
        model_file_path = r'linshixuqiu\19983-00_new.json'
liukaiwen's avatar
liukaiwen committed
761
762
763
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
764
765
        write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
        img_bucket_path = 'imgs'
liukaiwen's avatar
liukaiwen committed
766
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
767
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
768
769
770
771
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
772
            drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json')
liukaiwen's avatar
liukaiwen committed
773
774
        )
        pdf_bytes = drw.read(
775
            '/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf', AbsReaderWriter.MODE_BIN
liukaiwen's avatar
liukaiwen committed
776
        )
777
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
778
779
780
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))