magic_model.py 30 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
import json
kernel.h@qq.com's avatar
kernel.h@qq.com committed
2

3
from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
4
5
6
                                    bbox_relative_pos, box_area, calculate_iou,
                                    calculate_overlap_area_in_bbox1_area_ratio,
                                    get_overlap_area)
7
from magic_pdf.libs.commons import fitz, join_path
liukaiwen's avatar
liukaiwen committed
8
from magic_pdf.libs.coordinate_transform import get_scale_ratio
9
from magic_pdf.libs.local_math import float_gt
liukaiwen's avatar
liukaiwen committed
10
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
11
12
13
from magic_pdf.libs.ocr_content_type import CategoryId, ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
liukaiwen's avatar
liukaiwen committed
14

15
CAPATION_OVERLAP_AREA_RATIO = 0.6
16
MERGE_BOX_OVERLAP_AREA_RATIO = 1.1
liukaiwen's avatar
liukaiwen committed
17

许瑞's avatar
许瑞 committed
18

liukaiwen's avatar
liukaiwen committed
19
class MagicModel:
20
    """每个函数没有得到元素的时候返回空list."""
liukaiwen's avatar
liukaiwen committed
21
22
23

    def __fix_axis(self):
        for model_page_info in self.__model_list:
24
            need_remove_list = []
25
            page_no = model_page_info['page_info']['page_no']
liukaiwen's avatar
liukaiwen committed
26
27
28
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
29
            layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
30
            for layout_det in layout_dets:
31

32
                if layout_det.get('bbox') is not None:
33
                    # 兼容直接输出bbox的模型数据,如paddle
34
                    x0, y0, x1, y1 = layout_det['bbox']
35
36
                else:
                    # 兼容直接输出poly的模型数据,如xxx
37
                    x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
38

liukaiwen's avatar
liukaiwen committed
39
40
41
42
43
44
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
45
                layout_det['bbox'] = bbox
46
47
                # 删除高度或者宽度小于等于0的spans
                if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
liukaiwen's avatar
liukaiwen committed
48
49
50
51
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

52
    def __fix_by_remove_low_confidence(self):
53
54
        for model_page_info in self.__model_list:
            need_remove_list = []
55
            layout_dets = model_page_info['layout_dets']
56
            for layout_det in layout_dets:
57
                if layout_det['score'] <= 0.05:
58
59
60
61
62
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
63

64
65
66
    def __fix_by_remove_high_iou_and_low_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
67
            layout_dets = model_page_info['layout_dets']
68
69
70
71
            for layout_det1 in layout_dets:
                for layout_det2 in layout_dets:
                    if layout_det1 == layout_det2:
                        continue
72
                    if layout_det1['category_id'] in [
blue's avatar
blue committed
73
74
75
76
77
78
79
80
81
82
                        0,
                        1,
                        2,
                        3,
                        4,
                        5,
                        6,
                        7,
                        8,
                        9,
83
                    ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
blue's avatar
blue committed
84
                        if (
85
                            calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
blue's avatar
blue committed
86
87
                            > 0.9
                        ):
88
                            if layout_det1['score'] < layout_det2['score']:
89
90
91
92
93
94
95
96
97
98
99
100
101
                                layout_det_need_remove = layout_det1
                            else:
                                layout_det_need_remove = layout_det2

                            if layout_det_need_remove not in need_remove_list:
                                need_remove_list.append(layout_det_need_remove)
                        else:
                            continue
                    else:
                        continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

liukaiwen's avatar
liukaiwen committed
102
    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
103
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
104
        self.__docs = docs
blue's avatar
blue committed
105
        """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
kernel.h@qq.com's avatar
kernel.h@qq.com committed
106
        self.__fix_axis()
blue's avatar
blue committed
107
        """删除置信度特别低的模型数据(<0.05),提高质量"""
108
        self.__fix_by_remove_low_confidence()
blue's avatar
blue committed
109
        """删除高iou(>0.9)数据中置信度较低的那个"""
110
        self.__fix_by_remove_high_iou_and_low_confidence()
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        self.__fix_footnote()

    def __fix_footnote(self):
        # 3: figure, 5: table, 7: footnote
        for model_page_info in self.__model_list:
            footnotes = []
            figures = []
            tables = []

            for obj in model_page_info['layout_dets']:
                if obj['category_id'] == 7:
                    footnotes.append(obj)
                elif obj['category_id'] == 3:
                    figures.append(obj)
                elif obj['category_id'] == 5:
                    tables.append(obj)
                if len(footnotes) * len(figures) == 0:
                    continue
129
130
131
132
133
134
135
136
137
138
139
140
            dis_figure_footnote = {}
            dis_table_footnote = {}

            for i in range(len(footnotes)):
                for j in range(len(figures)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], figures[j]['bbox']
                                ),
141
142
                            )
                        )
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
                    )
                    if pos_flag_count > 1:
                        continue
                    dis_figure_footnote[i] = min(
                        bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
                        dis_figure_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                for j in range(len(tables)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], tables[j]['bbox']
                                ),
159
160
                            )
                        )
161
162
163
                    )
                    if pos_flag_count > 1:
                        continue
164

165
166
167
168
169
170
171
172
173
                    dis_table_footnote[i] = min(
                        bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
                        dis_table_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                if i not in dis_figure_footnote:
                    continue
                if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
                    footnotes[i]['category_id'] = CategoryId.ImageFootnote
liukaiwen's avatar
liukaiwen committed
174
175
176
177
178
179
180
181

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
182
                if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
liukaiwen's avatar
liukaiwen committed
183
184
185
186
                    keep[i] = False
        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
187
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
188
    ):
189
190
        """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
        只能属于一个 subject."""
liukaiwen's avatar
liukaiwen committed
191
        ret = []
192
        MAX_DIS_OF_POINT = 10**9 + 7
193
194
195
196
197
        """
        subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
        筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
        再求出筛选出的 subjects 和 object 的最短距离
        """
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        def search_overlap_between_boxes(
            subject_idx, object_idx
        ):
            idxes = [subject_idx, object_idx]
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]

            merged_bbox = [
                min(x0s),
                min(y0s),
                max(x1s),
                max(y1s),
            ]
            ratio = 0

            other_objects = list(
                map(
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
                    filter(
                        lambda x: x['category_id']
                        not in (object_category_id, subject_category_id),
                        self.__model_list[page_no]['layout_dets'],
                    ),
                )
            )
            for other_object in other_objects:
                ratio = max(
                    ratio,
                    get_overlap_area(
                        merged_bbox, other_object['bbox']
                    ) * 1.0 / box_area(all_bboxes[object_idx]['bbox'])
                )
                if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    break

            return ratio
liukaiwen's avatar
liukaiwen committed
236

许瑞's avatar
许瑞 committed
237
        def may_find_other_nearest_bbox(subject_idx, object_idx):
238
            ret = float('inf')
239

许瑞's avatar
许瑞 committed
240
            x0 = min(
241
                all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
242
243
            )
            y0 = min(
244
                all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
245
246
            )
            x1 = max(
247
                all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
许瑞's avatar
许瑞 committed
248
249
            )
            y1 = max(
250
                all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
许瑞's avatar
许瑞 committed
251
            )
许瑞's avatar
许瑞 committed
252

许瑞's avatar
许瑞 committed
253
            object_area = abs(
254
                all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
255
            ) * abs(
256
                all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
257
            )
许瑞's avatar
许瑞 committed
258
259

            for i in range(len(all_bboxes)):
许瑞's avatar
许瑞 committed
260
261
                if (
                    i == subject_idx
262
                    or all_bboxes[i]['category_id'] != subject_category_id
许瑞's avatar
许瑞 committed
263
                ):
许瑞's avatar
许瑞 committed
264
                    continue
265
266
                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
                    all_bboxes[i]['bbox'], [x0, y0, x1, y1]
许瑞's avatar
许瑞 committed
267
                ):
268

许瑞's avatar
许瑞 committed
269
                    i_area = abs(
270
271
                        all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
                    ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
许瑞's avatar
许瑞 committed
272
                    if i_area >= object_area:
273
                        ret = min(float('inf'), dis[i][object_idx])
274

许瑞's avatar
许瑞 committed
275
276
            return ret

blue's avatar
blue committed
277
        def expand_bbbox(idxes):
278
279
280
281
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
blue's avatar
blue committed
282
283
            return min(x0s), min(y0s), max(x1s), max(y1s)

liukaiwen's avatar
liukaiwen committed
284
285
286
        subjects = self.__reduct_overlap(
            list(
                map(
287
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
288
                    filter(
289
290
                        lambda x: x['category_id'] == subject_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
291
292
293
294
295
296
297
298
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
299
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
300
                    filter(
301
302
                        lambda x: x['category_id'] == object_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
303
304
305
306
307
308
                    ),
                )
            )
        )
        subject_object_relation_map = {}

许瑞's avatar
许瑞 committed
309
        subjects.sort(
310
            key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
许瑞's avatar
许瑞 committed
311
        )  # get the distance !
liukaiwen's avatar
liukaiwen committed
312
313
314
315

        all_bboxes = []

        for v in subjects:
许瑞's avatar
许瑞 committed
316
317
            all_bboxes.append(
                {
318
319
320
                    'category_id': subject_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
321
322
                }
            )
liukaiwen's avatar
liukaiwen committed
323
324

        for v in objects:
许瑞's avatar
许瑞 committed
325
326
            all_bboxes.append(
                {
327
328
329
                    'category_id': object_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
330
331
                }
            )
liukaiwen's avatar
liukaiwen committed
332
333
334
335
336
337
338

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
339
340
                    all_bboxes[i]['category_id'] == subject_category_id
                    and all_bboxes[j]['category_id'] == subject_category_id
liukaiwen's avatar
liukaiwen committed
341
342
343
                ):
                    continue

344
345
346
347
348
349
350
351
352
                subject_idx, object_idx = i, j
                if all_bboxes[j]['category_id'] == subject_category_id:
                    subject_idx, object_idx = j, i

                if search_overlap_between_boxes(subject_idx, object_idx) >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    dis[i][j] = float('inf')
                    dis[j][i] = dis[i][j]
                    continue

353
                dis[i][j] = bbox_distance(all_bboxes[i]['bbox'], all_bboxes[j]['bbox'])
liukaiwen's avatar
liukaiwen committed
354
355
356
357
358
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
359
            if all_bboxes[i]['category_id'] != subject_category_id:
liukaiwen's avatar
liukaiwen committed
360
361
362
363
364
365
366
367
368
369
370
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
371
                                all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
372
373
374
375
376
377
378
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
379
                    all_bboxes[j]['category_id'] != object_category_id
380
381
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
382
383
                ):
                    continue
blue's avatar
blue committed
384
                left, right, _, _ = bbox_relative_pos(
385
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
blue's avatar
blue committed
386
                )  # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
许瑞's avatar
许瑞 committed
387
                if left or right:
388
                    one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
许瑞's avatar
许瑞 committed
389
                else:
390
                    one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
许瑞's avatar
许瑞 committed
391
392
                if dis[i][j] > one_way_dis:
                    continue
liukaiwen's avatar
liukaiwen committed
393
394
395
396
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
397
398
399
400
                """
                bug: 离该subject 最近的 object 可能跨越了其它的 subject。
                比如 [this subect] [some sbuject] [the nearest object of subject]
                """
许瑞's avatar
许瑞 committed
401
                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
许瑞's avatar
许瑞 committed
402

许瑞's avatar
许瑞 committed
403
404
                    candidates.append(arr[0][1])
                    seen.add(arr[0][1])
liukaiwen's avatar
liukaiwen committed
405
406
407
408
409
410
411
412
413
414

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
415
                                    all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
liukaiwen's avatar
liukaiwen committed
416
417
418
419
420
421
422
423
424
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
425
                        all_bboxes[k]['category_id'] != object_category_id
426
427
428
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
许瑞's avatar
许瑞 committed
429
                        or dis[j][k] > dis[i][j]
liukaiwen's avatar
liukaiwen committed
430
431
                    ):
                        continue
许瑞's avatar
许瑞 committed
432

liukaiwen's avatar
liukaiwen committed
433
                    is_nearest = True
434
435
                    for ni in range(i + 1, N):
                        if ni in (j, k) or ni in used or ni in seen:
liukaiwen's avatar
liukaiwen committed
436
437
                            continue

438
                        if not float_gt(dis[ni][k], dis[j][k]):
liukaiwen's avatar
liukaiwen committed
439
440
441
442
                            is_nearest = False
                            break

                    if is_nearest:
blue's avatar
blue committed
443
                        nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
444
445
446
                        n_dis = bbox_distance(
                            all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
                        )
blue's avatar
blue committed
447
448
                        if float_gt(dis[i][j], n_dis):
                            continue
liukaiwen's avatar
liukaiwen committed
449
450
451
452
453
454
455
456
457
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
blue's avatar
blue committed
458
            ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
459
            ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
liukaiwen's avatar
liukaiwen committed
460
461
462
463
464
465
466
467
468
469
470
471
472

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
许瑞's avatar
许瑞 committed
473
474
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
475
                            all_bboxes[idx]['bbox'], bbox
许瑞's avatar
许瑞 committed
476
477
478
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
479
480
481
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
482
483
484
485
                    embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
liukaiwen's avatar
liukaiwen committed
486
487
488
489
490
491
492
493
494
495
496
497
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
许瑞's avatar
许瑞 committed
498
499
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
500
                            all_bboxes[j]['bbox'], caption_bbox
许瑞's avatar
许瑞 committed
501
502
503
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
504
505
506
507
508
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
509
510
511
                'subject_body': all_bboxes[i]['bbox'],
                'all': all_bboxes[i]['bbox'],
                'score': all_bboxes[i]['score'],
liukaiwen's avatar
liukaiwen committed
512
513
514
515
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
516
                    [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
517
518
                )
                y0 = min(
519
                    [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
520
521
                )
                x1 = max(
522
                    [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
523
524
                )
                y1 = max(
525
                    [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
526
                )
527
528
529
530
531
532
                result['object_body'] = [x0, y0, x1, y1]
                result['all'] = [
                    min(x0, all_bboxes[i]['bbox'][0]),
                    min(y0, all_bboxes[i]['bbox'][1]),
                    max(x1, all_bboxes[i]['bbox'][2]),
                    max(y1, all_bboxes[i]['bbox'][3]),
liukaiwen's avatar
liukaiwen committed
533
534
535
536
537
538
539
540
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
                total_subject_object_dis += bbox_distance(
541
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
542
543
544
545
546
547
548
549
550
551
552
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
553
            if all_bboxes[i]['category_id'] != object_category_id or i in used:
liukaiwen's avatar
liukaiwen committed
554
555
556
557
                continue
            candidates = []
            for j in range(N):
                if (
558
                    all_bboxes[j]['category_id'] != subject_category_id
559
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
560
561
562
563
564
565
566
567
568
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

blue's avatar
blue committed
569
    def get_imgs(self, page_no: int):
570
571
572
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        with_footnotes, _ = self.__tie_up_category_by_distance(
            page_no, 3, CategoryId.ImageFootnote
blue's avatar
blue committed
573
        )
574
575
576
577
578
579
580
581
582
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
                'score': with_captions[i]['score'],
                'img_caption_bbox': with_captions[i].get('object_body', None),
                'img_body_bbox': with_captions[i]['subject_body'],
                'img_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
583
            }
584
585
586
587
588
589
590
591

            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
            ret.append(record)
        return ret
liukaiwen's avatar
liukaiwen committed
592
593

    def get_tables(
594
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
595
596
597
598
599
600
601
602
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
603
604
605
606
                'score': with_captions[i]['score'],
                'table_caption_bbox': with_captions[i].get('object_body', None),
                'table_body_bbox': with_captions[i]['subject_body'],
                'table_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
607
608
            }

609
610
611
612
613
            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
liukaiwen's avatar
liukaiwen committed
614
615
616
617
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
618
        inline_equations = self.__get_blocks_by_type(
619
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
620
621
        )
        interline_equations = self.__get_blocks_by_type(
622
            ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
623
624
625
626
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
644
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
645
        for layout_det in layout_dets:
646
            if layout_det['category_id'] == '15':
liukaiwen's avatar
liukaiwen committed
647
                span = {
648
649
                    'bbox': layout_det['bbox'],
                    'content': layout_det['text'],
liukaiwen's avatar
liukaiwen committed
650
651
652
653
654
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
655

656
657
658
659
660
661
        def remove_duplicate_spans(spans):
            new_spans = []
            for span in spans:
                if not any(span == existing_span for existing_span in new_spans):
                    new_spans.append(span)
            return new_spans
blue's avatar
blue committed
662

liukaiwen's avatar
liukaiwen committed
663
664
        all_spans = []
        model_page_info = self.__model_list[page_no]
665
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
666
667
668
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
669
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
670
671
672
673
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
674
            category_id = layout_det['category_id']
liukaiwen's avatar
liukaiwen committed
675
            if category_id in allow_category_id_list:
676
                span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
liukaiwen's avatar
liukaiwen committed
677
                if category_id == 3:
678
                    span['type'] = ContentType.Image
liukaiwen's avatar
liukaiwen committed
679
                elif category_id == 5:
680
                    # 获取table模型结果
681
682
                    latex = layout_det.get('latex', None)
                    html = layout_det.get('html', None)
683
                    if latex:
684
                        span['latex'] = latex
685
                    elif html:
686
687
                        span['html'] = html
                    span['type'] = ContentType.Table
liukaiwen's avatar
liukaiwen committed
688
                elif category_id == 13:
689
690
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InlineEquation
liukaiwen's avatar
liukaiwen committed
691
                elif category_id == 14:
692
693
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InterlineEquation
liukaiwen's avatar
liukaiwen committed
694
                elif category_id == 15:
695
696
                    span['content'] = layout_det['text']
                    span['type'] = ContentType.Text
liukaiwen's avatar
liukaiwen committed
697
                all_spans.append(span)
698
        return remove_duplicate_spans(all_spans)
liukaiwen's avatar
liukaiwen committed
699
700
701
702
703
704
705
706
707

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
        page = self.__docs[page_no]
        # 获取当前页的宽高
        page_w = page.rect.width
        page_h = page.rect.height
        return page_w, page_h

708
709
710
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
711
712
        blocks = []
        for page_dict in self.__model_list:
713
714
715
            layout_dets = page_dict.get('layout_dets', [])
            page_info = page_dict.get('page_info', {})
            page_number = page_info.get('page_no', -1)
liukaiwen's avatar
liukaiwen committed
716
717
718
            if page_no != page_number:
                continue
            for item in layout_dets:
719
720
                category_id = item.get('category_id', -1)
                bbox = item.get('bbox', None)
liukaiwen's avatar
liukaiwen committed
721

liukaiwen's avatar
liukaiwen committed
722
                if category_id == type:
723
                    block = {
724
725
                        'bbox': bbox,
                        'score': item.get('score'),
726
                    }
liukaiwen's avatar
liukaiwen committed
727
728
729
730
731
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

许瑞's avatar
许瑞 committed
732
733
734
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

735

736
737
if __name__ == '__main__':
    drw = DiskReaderWriter(r'D:/project/20231108code-clean')
liukaiwen's avatar
liukaiwen committed
738
    if 0:
739
740
        pdf_file_path = r'linshixuqiu\19983-00.pdf'
        model_file_path = r'linshixuqiu\19983-00_new.json'
liukaiwen's avatar
liukaiwen committed
741
742
743
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
744
745
        write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
        img_bucket_path = 'imgs'
liukaiwen's avatar
liukaiwen committed
746
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
747
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
748
749
750
751
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
752
            drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json')
liukaiwen's avatar
liukaiwen committed
753
754
        )
        pdf_bytes = drw.read(
755
            '/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf', AbsReaderWriter.MODE_BIN
liukaiwen's avatar
liukaiwen committed
756
        )
757
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
758
759
760
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))