magic_model.py 24.6 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
2
import json
import math
kernel.h@qq.com's avatar
kernel.h@qq.com committed
3

liukaiwen's avatar
liukaiwen committed
4
5
from magic_pdf.libs.commons import fitz
from loguru import logger
kernel.h@qq.com's avatar
kernel.h@qq.com committed
6

liukaiwen's avatar
liukaiwen committed
7
8
9
10
11
from magic_pdf.libs.commons import join_path
from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
12
from magic_pdf.libs.local_math import float_gt
13
14
15
16
17
from magic_pdf.libs.boxbase import (
    _is_in,
    bbox_relative_pos,
    bbox_distance,
    _is_part_overlap,
blue's avatar
blue committed
18
19
    calculate_overlap_area_in_bbox1_area_ratio,
    calculate_iou,
20
)
liukaiwen's avatar
liukaiwen committed
21
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
liukaiwen's avatar
liukaiwen committed
22

23
CAPATION_OVERLAP_AREA_RATIO = 0.6
liukaiwen's avatar
liukaiwen committed
24

许瑞's avatar
许瑞 committed
25

liukaiwen's avatar
liukaiwen committed
26
class MagicModel:
kernel.h@qq.com's avatar
kernel.h@qq.com committed
27
28
    """
    每个函数没有得到元素的时候返回空list
liukaiwen's avatar
liukaiwen committed
29

kernel.h@qq.com's avatar
kernel.h@qq.com committed
30
    """
liukaiwen's avatar
liukaiwen committed
31
32
33

    def __fix_axis(self):
        for model_page_info in self.__model_list:
34
            need_remove_list = []
liukaiwen's avatar
liukaiwen committed
35
36
37
38
39
40
            page_no = model_page_info["page_info"]["page_no"]
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
41
42
43
44
45
46
47
48

                if layout_det.get("bbox") is not None:
                    # 兼容直接输出bbox的模型数据,如paddle
                    x0, y0, x1, y1 = layout_det["bbox"]
                else:
                    # 兼容直接输出poly的模型数据,如xxx
                    x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]

liukaiwen's avatar
liukaiwen committed
49
50
51
52
53
54
55
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
                layout_det["bbox"] = bbox
56
57
                # 删除高度或者宽度小于等于0的spans
                if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
liukaiwen's avatar
liukaiwen committed
58
59
60
61
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

62
    def __fix_by_remove_low_confidence(self):
63
64
65
66
        for model_page_info in self.__model_list:
            need_remove_list = []
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
赵小蒙's avatar
赵小蒙 committed
67
                if layout_det["score"] <= 0.05:
68
69
70
71
72
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
73

74
75
76
77
78
79
80
81
    def __fix_by_remove_high_iou_and_low_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
            layout_dets = model_page_info["layout_dets"]
            for layout_det1 in layout_dets:
                for layout_det2 in layout_dets:
                    if layout_det1 == layout_det2:
                        continue
blue's avatar
blue committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
                    if layout_det1["category_id"] in [
                        0,
                        1,
                        2,
                        3,
                        4,
                        5,
                        6,
                        7,
                        8,
                        9,
                    ] and layout_det2["category_id"] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
                        if (
                            calculate_iou(layout_det1["bbox"], layout_det2["bbox"])
                            > 0.9
                        ):
                            if layout_det1["score"] < layout_det2["score"]:
99
100
101
102
103
104
105
106
107
108
109
110
111
                                layout_det_need_remove = layout_det1
                            else:
                                layout_det_need_remove = layout_det2

                            if layout_det_need_remove not in need_remove_list:
                                need_remove_list.append(layout_det_need_remove)
                        else:
                            continue
                    else:
                        continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

liukaiwen's avatar
liukaiwen committed
112
    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
113
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
114
        self.__docs = docs
blue's avatar
blue committed
115
        """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
kernel.h@qq.com's avatar
kernel.h@qq.com committed
116
        self.__fix_axis()
blue's avatar
blue committed
117
        """删除置信度特别低的模型数据(<0.05),提高质量"""
118
        self.__fix_by_remove_low_confidence()
blue's avatar
blue committed
119
        """删除高iou(>0.9)数据中置信度较低的那个"""
120
        self.__fix_by_remove_high_iou_and_low_confidence()
liukaiwen's avatar
liukaiwen committed
121
122
123
124
125
126
127
128

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
许瑞's avatar
许瑞 committed
129
                if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
liukaiwen's avatar
liukaiwen committed
130
131
132
133
134
                    keep[i] = False

        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
135
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
136
137
138
139
140
    ):
        """
        假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
        """
        ret = []
141
        MAX_DIS_OF_POINT = 10**9 + 7
liukaiwen's avatar
liukaiwen committed
142

许瑞's avatar
许瑞 committed
143
144
145
146
        # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
        # 再求出筛选出的 subjects 和 object 的最短距离!
        def may_find_other_nearest_bbox(subject_idx, object_idx):
            ret = float("inf")
147

许瑞's avatar
许瑞 committed
148
149
150
151
152
153
154
155
156
157
158
159
            x0 = min(
                all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
            )
            y0 = min(
                all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
            )
            x1 = max(
                all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
            )
            y1 = max(
                all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
            )
许瑞's avatar
许瑞 committed
160

许瑞's avatar
许瑞 committed
161
162
163
164
165
            object_area = abs(
                all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
            ) * abs(
                all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
            )
许瑞's avatar
许瑞 committed
166
167

            for i in range(len(all_bboxes)):
许瑞's avatar
许瑞 committed
168
169
170
171
                if (
                    i == subject_idx
                    or all_bboxes[i]["category_id"] != subject_category_id
                ):
许瑞's avatar
许瑞 committed
172
                    continue
许瑞's avatar
许瑞 committed
173
174
175
                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
                    all_bboxes[i]["bbox"], [x0, y0, x1, y1]
                ):
176

许瑞's avatar
许瑞 committed
177
178
179
                    i_area = abs(
                        all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
                    ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
许瑞's avatar
许瑞 committed
180
                    if i_area >= object_area:
许瑞's avatar
许瑞 committed
181
                        ret = min(float("inf"), dis[i][object_idx])
182

许瑞's avatar
许瑞 committed
183
184
            return ret

blue's avatar
blue committed
185
186
187
188
189
190
191
        def expand_bbbox(idxes):
            x0s = [all_bboxes[idx]["bbox"][0] for idx in idxes] 
            y0s = [all_bboxes[idx]["bbox"][1] for idx in idxes] 
            x1s = [all_bboxes[idx]["bbox"][2] for idx in idxes] 
            y1s = [all_bboxes[idx]["bbox"][3] for idx in idxes] 
            return min(x0s), min(y0s), max(x1s), max(y1s)

liukaiwen's avatar
liukaiwen committed
192
193
194
        subjects = self.__reduct_overlap(
            list(
                map(
许瑞's avatar
许瑞 committed
195
                    lambda x: {"bbox": x["bbox"], "score": x["score"]},
liukaiwen's avatar
liukaiwen committed
196
197
198
199
200
201
202
203
204
205
206
                    filter(
                        lambda x: x["category_id"] == subject_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
许瑞's avatar
许瑞 committed
207
                    lambda x: {"bbox": x["bbox"], "score": x["score"]},
liukaiwen's avatar
liukaiwen committed
208
209
210
211
212
213
214
215
216
                    filter(
                        lambda x: x["category_id"] == object_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )
        subject_object_relation_map = {}

许瑞's avatar
许瑞 committed
217
218
219
        subjects.sort(
            key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
        )  # get the distance !
liukaiwen's avatar
liukaiwen committed
220
221
222
223

        all_bboxes = []

        for v in subjects:
许瑞's avatar
许瑞 committed
224
225
226
227
228
229
230
            all_bboxes.append(
                {
                    "category_id": subject_category_id,
                    "bbox": v["bbox"],
                    "score": v["score"],
                }
            )
liukaiwen's avatar
liukaiwen committed
231
232

        for v in objects:
许瑞's avatar
许瑞 committed
233
234
235
236
237
238
239
            all_bboxes.append(
                {
                    "category_id": object_category_id,
                    "bbox": v["bbox"],
                    "score": v["score"],
                }
            )
liukaiwen's avatar
liukaiwen committed
240
241
242
243
244
245
246

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
247
248
                    all_bboxes[i]["category_id"] == subject_category_id
                    and all_bboxes[j]["category_id"] == subject_category_id
liukaiwen's avatar
liukaiwen committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                ):
                    continue

                dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
            if all_bboxes[i]["category_id"] != subject_category_id:
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
                                all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
278
279
280
                    all_bboxes[j]["category_id"] != object_category_id
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
281
282
                ):
                    continue
blue's avatar
blue committed
283
284
285
                left, right, _, _ = bbox_relative_pos(
                    all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                )  # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
许瑞's avatar
许瑞 committed
286
287
288
289
290
291
                if left or right:
                    one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
                else:
                    one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
                if dis[i][j] > one_way_dis:
                    continue
liukaiwen's avatar
liukaiwen committed
292
293
294
295
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
许瑞's avatar
许瑞 committed
296
                # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
许瑞's avatar
许瑞 committed
297
                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
许瑞's avatar
许瑞 committed
298

许瑞's avatar
许瑞 committed
299
300
                    candidates.append(arr[0][1])
                    seen.add(arr[0][1])
liukaiwen's avatar
liukaiwen committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
321
322
323
324
                        all_bboxes[k]["category_id"] != object_category_id
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
许瑞's avatar
许瑞 committed
325
                        or dis[j][k] > dis[i][j]
liukaiwen's avatar
liukaiwen committed
326
327
                    ):
                        continue
许瑞's avatar
许瑞 committed
328

liukaiwen's avatar
liukaiwen committed
329
330
331
332
333
334
335
336
337
338
                    is_nearest = True
                    for l in range(i + 1, N):
                        if l in (j, k) or l in used or l in seen:
                            continue

                        if not float_gt(dis[l][k], dis[j][k]):
                            is_nearest = False
                            break

                    if is_nearest:
blue's avatar
blue committed
339
340
341
342
                        nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
                        n_dis = bbox_distance(all_bboxes[i]["bbox"], [nx0, ny0, nx1, ny1])
                        if float_gt(dis[i][j], n_dis):
                            continue
liukaiwen's avatar
liukaiwen committed
343
344
345
346
347
348
349
350
351
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
blue's avatar
blue committed
352
            ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
liukaiwen's avatar
liukaiwen committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
            ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
许瑞's avatar
许瑞 committed
367
368
369
370
371
372
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
                            all_bboxes[idx]["bbox"], bbox
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
                    embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
许瑞's avatar
许瑞 committed
392
393
394
395
396
397
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
                            all_bboxes[j]["bbox"], caption_bbox
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
398
399
400
401
402
403
404
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
                "subject_body": all_bboxes[i]["bbox"],
                "all": all_bboxes[i]["bbox"],
许瑞's avatar
许瑞 committed
405
                "score": all_bboxes[i]["score"],
liukaiwen's avatar
liukaiwen committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
                    [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
                )
                y0 = min(
                    [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
                )
                x1 = max(
                    [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
                )
                y1 = max(
                    [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
                )
                result["object_body"] = [x0, y0, x1, y1]
                result["all"] = [
                    min(x0, all_bboxes[i]["bbox"][0]),
                    min(y0, all_bboxes[i]["bbox"][1]),
                    max(x1, all_bboxes[i]["bbox"][2]),
                    max(y1, all_bboxes[i]["bbox"][3]),
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
                total_subject_object_dis += bbox_distance(
                    all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
            if all_bboxes[i]["category_id"] != object_category_id or i in used:
                continue
            candidates = []
            for j in range(N):
                if (
452
453
                    all_bboxes[j]["category_id"] != subject_category_id
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
454
455
456
457
458
459
460
461
462
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

blue's avatar
blue committed
463
464
465
466
    def get_imgs(self, page_no: int):
        figure_captions, _ = self.__tie_up_category_by_distance(
            page_no, 3, 4
        )
liukaiwen's avatar
liukaiwen committed
467
468
469
470
471
        return [
            {
                "bbox": record["all"],
                "img_body_bbox": record["subject_body"],
                "img_caption_bbox": record.get("object_body", None),
许瑞's avatar
许瑞 committed
472
                "score": record["score"],
liukaiwen's avatar
liukaiwen committed
473
            }
blue's avatar
blue committed
474
            for record in figure_captions
liukaiwen's avatar
liukaiwen committed
475
476
477
        ]

    def get_tables(
478
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
479
480
481
482
483
484
485
486
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
许瑞's avatar
许瑞 committed
487
                "score": with_captions[i]["score"],
liukaiwen's avatar
liukaiwen committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
                "table_caption_bbox": with_captions[i].get("object_body", None),
                "table_body_bbox": with_captions[i]["subject_body"],
                "table_footnote_bbox": with_footnotes[i].get("object_body", None),
            }

            x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
            y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
            x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
            y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
            record["bbox"] = [x0, y0, x1, y1]
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
502
503
504
505
506
507
508
509
510
        inline_equations = self.__get_blocks_by_type(
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
        )
        interline_equations = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
        layout_dets = model_page_info["layout_dets"]
        for layout_det in layout_dets:
            if layout_det["category_id"] == "15":
                span = {
532
                    "bbox": layout_det["bbox"],
liukaiwen's avatar
liukaiwen committed
533
534
535
536
537
538
                    "content": layout_det["text"],
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
539
540
541
542
543
544
        def remove_duplicate_spans(spans):
            new_spans = []
            for span in spans:
                if not any(span == existing_span for existing_span in new_spans):
                    new_spans.append(span)
            return new_spans
blue's avatar
blue committed
545

liukaiwen's avatar
liukaiwen committed
546
547
548
549
550
551
        all_spans = []
        model_page_info = self.__model_list[page_no]
        layout_dets = model_page_info["layout_dets"]
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
552
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
553
554
555
556
557
558
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
            category_id = layout_det["category_id"]
            if category_id in allow_category_id_list:
blue's avatar
blue committed
559
                span = {"bbox": layout_det["bbox"], "score": layout_det["score"]}
liukaiwen's avatar
liukaiwen committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
                if category_id == 3:
                    span["type"] = ContentType.Image
                elif category_id == 5:
                    span["type"] = ContentType.Table
                elif category_id == 13:
                    span["content"] = layout_det["latex"]
                    span["type"] = ContentType.InlineEquation
                elif category_id == 14:
                    span["content"] = layout_det["latex"]
                    span["type"] = ContentType.InterlineEquation
                elif category_id == 15:
                    span["content"] = layout_det["text"]
                    span["type"] = ContentType.Text
                all_spans.append(span)
574
        return remove_duplicate_spans(all_spans)
liukaiwen's avatar
liukaiwen committed
575
576
577
578
579
580
581
582
583

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
        page = self.__docs[page_no]
        # 获取当前页的宽高
        page_w = page.rect.width
        page_h = page.rect.height
        return page_w, page_h

584
585
586
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
587
588
589
590
591
592
593
594
595
596
597
        blocks = []
        for page_dict in self.__model_list:
            layout_dets = page_dict.get("layout_dets", [])
            page_info = page_dict.get("page_info", {})
            page_number = page_info.get("page_no", -1)
            if page_no != page_number:
                continue
            for item in layout_dets:
                category_id = item.get("category_id", -1)
                bbox = item.get("bbox", None)

liukaiwen's avatar
liukaiwen committed
598
                if category_id == type:
599
600
601
602
                    block = {
                        "bbox": bbox,
                        "score": item.get("score"),
                    }
liukaiwen's avatar
liukaiwen committed
603
604
605
606
607
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

许瑞's avatar
许瑞 committed
608
609
610
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

611

liukaiwen's avatar
liukaiwen committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
if __name__ == "__main__":
    drw = DiskReaderWriter(r"D:/project/20231108code-clean")
    if 0:
        pdf_file_path = r"linshixuqiu\19983-00.pdf"
        model_file_path = r"linshixuqiu\19983-00_new.json"
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
        write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
        img_bucket_path = "imgs"
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
            drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
        )
        pdf_bytes = drw.read(
            "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
        )
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))