"docs/ZH_CN/vscode:/vscode.git/clone" did not exist on "3e5dfb4d84f720f9d29e25ddb260fc7f90d3d309"
README.md 16.4 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
赵小蒙's avatar
赵小蒙 committed
8
9
10
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
11
12
13
14
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
xuchao's avatar
xuchao committed
15
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
16

xuchao's avatar
xuchao committed
17
18
<!-- language -->
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
19

xuchao's avatar
xuchao committed
20
<!-- hot link -->
徐超's avatar
徐超 committed
21
<p align="center">
xuchao's avatar
xuchao committed
22
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
23
24
</p>

xuchao's avatar
xuchao committed
25
<!-- join us -->
徐超's avatar
徐超 committed
26
<p align="center">
xuchao's avatar
xuchao committed
27
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
28
</p>
赵小蒙's avatar
赵小蒙 committed
29

xuchao's avatar
xuchao committed
30
</div>
赵小蒙's avatar
赵小蒙 committed
31

xuchao's avatar
xuchao committed
32
# Changelog
yyy's avatar
yyy committed
33
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
xuchao's avatar
xuchao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
            <li><a href="#using-gpu">Using GPU</a></li>
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
            <li><a href="#command-line">Command Line</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>



# MinerU
## Project Introduction
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
84

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
85
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
86

xuchao's avatar
xuchao committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
## Key Features

- Removes elements such as headers, footers, footnotes, and page numbers while maintaining semantic continuity
- Outputs text in a human-readable order from multi-column documents
- Retains the original structure of the document, including titles, paragraphs, and lists
- Extracts images, image captions, tables, and table captions
- Automatically recognizes formulas in the document and converts them to LaTeX
- Automatically recognizes tables in the document and converts them to LaTeX
- Automatically detects and enables OCR for corrupted PDFs
- Supports both CPU and GPU environments
- Supports Windows, Linux, and Mac platforms

## Quick Start

If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
- [Linux/Windows + CUDA](#Using-GPU)

**⚠️ Pre-installation Notice—Hardware and Software Environment Support**

To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.

By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.

In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G VRAM only enables layout and formula recognition acceleration</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">Recommended Configuration 16G+ VRAM</td>
        <td colspan="2">3090/3090ti/4070ti super/4080/4090<br>
sfk's avatar
sfk committed
161
162
163
        16G or more can enable layout, formula recognition, and OCR acceleration simultaneously<br>
        24G or more can enable layout, formula recognition, OCR acceleration and table recognition simultaneously
        </td>
xuchao's avatar
xuchao committed
164
165
166
167
168
169
170
171
172
173
    </tr>
</table>

### Online Demo

[Click here for the online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF)

### Quick CPU Demo

#### 1. Install magic-pdf
174
175
176
```bash
conda create -n MinerU python=3.10
conda activate MinerU
yyy's avatar
yyy committed
177
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
178
```
xuchao's avatar
xuchao committed
179
180
181
182
183
184
185
186
187
188
189
190
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
> ❗️After downloading the models, please make sure to verify the completeness of the model files.
> 
> Check if the model file sizes match the description on the webpage. If possible, use sha256 to verify the integrity of the files.

#### 3. Copy and configure the template file
You can find the `magic-pdf.template.json` template configuration file in the root directory of the repository.
> ❗️Make sure to execute the following command to copy the configuration file to your **user directory**; otherwise, the program will not run.
> 
> The user directory for Windows is `C:\Users\YourUsername`, for Linux it is `/home/YourUsername`, and for macOS it is `/Users/YourUsername`.
赵小蒙's avatar
赵小蒙 committed
191
```bash
赵小蒙's avatar
赵小蒙 committed
192
cp magic-pdf.template.json ~/magic-pdf.json
193
```
194

xuchao's avatar
xuchao committed
195
196
197
198
199
200
Find the `magic-pdf.json` file in your user directory and configure the "models-dir" path to point to the directory where the model weight files were downloaded in [Step 2](#2-download-model-weight-files).
> ❗️Make sure to correctly configure the **absolute path** to the model weight files directory, otherwise the program will not run because it can't find the model files.
>
> On Windows, this path should include the drive letter and all backslashes (`\`) in the path should be replaced with forward slashes (`/`) to avoid syntax errors in the JSON file due to escape sequences.
> 
> For example: If the models are stored in the "models" directory at the root of the D drive, the "model-dir" value should be `D:/models`.
201
202
```json
{
xuchao's avatar
xuchao committed
203
204
205
  // other config
  "models-dir": "D:/models",
  "table-config": {
yyy's avatar
yyy committed
206
        "model": "TableMaster", // Another option of this value is 'struct_eqtable'
xuchao's avatar
xuchao committed
207
208
209
        "is_table_recog_enable": false, // Table recognition is disabled by default, modify this value to enable it
        "max_time": 400
    }
210
211
212
213
}
```


xuchao's avatar
xuchao committed
214
215
### Using GPU
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:
216

xuchao's avatar
xuchao committed
217
218
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
219
220


xuchao's avatar
xuchao committed
221
## Usage
222

xuchao's avatar
xuchao committed
223
### Command Line
224
225

```bash
xuchao's avatar
xuchao committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
  -m, --method [ocr|txt|auto]  the method for parsing pdf.  
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
                               without method specified, auto will be used by default. 
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
247
248
```

xuchao's avatar
xuchao committed
249
250
251
252
253
254
255
256
257
258
259
`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
├── some_pdf.md                 # markdown file
├── images                      # directory for storing images
├── layout.pdf                  # layout diagram
├── middle.json                 # MinerU intermediate processing result
├── model.json                  # model inference result
├── origin.pdf                  # original PDF file
└── spans.pdf                   # smallest granularity bbox position information diagram
260
261
```

xuchao's avatar
xuchao committed
262
For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
263

xuchao's avatar
xuchao committed
264
### API
赵小蒙's avatar
赵小蒙 committed
265

xuchao's avatar
xuchao committed
266
Processing files from local disk
赵小蒙's avatar
赵小蒙 committed
267
268
269
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
270
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
271
272
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
273
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
274
275
276
277
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
278
Processing files from object storage
赵小蒙's avatar
赵小蒙 committed
279
280
281
282
283
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
284
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
285
286
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
287
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
288
289
290
291
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
292
293
294
For detailed implementation, refer to:
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
295
296


xuchao's avatar
xuchao committed
297
### Development Guide
赵小蒙's avatar
赵小蒙 committed
298

xuchao's avatar
xuchao committed
299
TODO
赵小蒙's avatar
赵小蒙 committed
300

xuchao's avatar
xuchao committed
301
# TODO
赵小蒙's avatar
赵小蒙 committed
302

xuchao's avatar
xuchao committed
303
304
305
306
307
308
309
- [ ] Semantic-based reading order
- [ ] List recognition within the text
- [ ] Code block recognition within the text
- [ ] Table of contents recognition
- [x] Table recognition
- [ ] Chemical formula recognition
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
310

xuchao's avatar
xuchao committed
311
312
313
314
315
316
317
# Known Issues
- Reading order is segmented based on rules, which can cause disordered sequences in some cases
- Vertical text is not supported
- Lists, code blocks, and table of contents are not yet supported in the layout model
- Comic books, art books, elementary school textbooks, and exercise books are not well-parsed yet
- Enabling OCR may produce better results in PDFs with a high density of formulas
- If you are processing PDFs with a large number of formulas, it is strongly recommended to enable the OCR function. When using PyMuPDF to extract text, overlapping text lines can occur, leading to inaccurate formula insertion positions.
赵小蒙's avatar
赵小蒙 committed
318
319


xuchao's avatar
xuchao committed
320
321
# FAQ
[FAQ in Chinese](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
322

xuchao's avatar
xuchao committed
323
[FAQ in English](docs/FAQ_en_us.md)
赵小蒙's avatar
赵小蒙 committed
324
325


赵小蒙's avatar
赵小蒙 committed
326
327
# All Thanks To Our Contributors

328
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
329
330
331
332
333
334
335
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
336
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
337
338
339


# Acknowledgments
xuchao's avatar
xuchao committed
340
341
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
342
343
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
344
345
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
346

赵小蒙's avatar
赵小蒙 committed
347
348
349
# Citation

```bibtex
Conghui He's avatar
Conghui He committed
350
351
352
353
354
355
356
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

赵小蒙's avatar
赵小蒙 committed
357
358
359
360
361
362
363
364
365
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History
赵小蒙's avatar
赵小蒙 committed
366

赵小蒙's avatar
赵小蒙 committed
367
368
369
370
371
372
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
373
</a>
qiangqiang199's avatar
qiangqiang199 committed
374

xuchao's avatar
xuchao committed
375
376
377
378
379
380
# Magic-doc
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
381
# Links
xuchao's avatar
xuchao committed
382

qiangqiang199's avatar
qiangqiang199 committed
383
384
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
385
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)