pdf_parse_by_txt_v2.py 9.8 KB
Newer Older
许瑞's avatar
许瑞 committed
1
2
3
4
import time

from loguru import logger

赵小蒙's avatar
赵小蒙 committed
5
from magic_pdf.layout.layout_sort import get_bboxes_layout, LAYOUT_UNPROC, get_columns_cnt_of_layout
许瑞's avatar
许瑞 committed
6
from magic_pdf.libs.convert_utils import dict_to_list
赵小蒙's avatar
赵小蒙 committed
7
from magic_pdf.libs.drop_reason import DropReason
许瑞's avatar
许瑞 committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from magic_pdf.libs.hash_utils import compute_md5
from magic_pdf.libs.commons import fitz, get_delta_time
from magic_pdf.model.magic_model import MagicModel
from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split
from magic_pdf.pre_proc.ocr_dict_merge import (
    sort_blocks_by_layout,
    fill_spans_in_blocks,
    fix_block_spans,
)
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.pre_proc.ocr_span_list_modify import (
    remove_overlaps_min_spans,
    get_qa_need_list_v2,
)
赵小蒙's avatar
赵小蒙 committed
24

许瑞's avatar
许瑞 committed
25
26
27
28
29
30
from magic_pdf.pre_proc.equations_replace import (
    combine_chars_to_pymudict,
    remove_chars_in_text_blocks,
    replace_equations_in_textblock,
)
from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
31
32
from magic_pdf.libs.math import float_equal
from magic_pdf.para.para_split_v2 import para_split
赵小蒙's avatar
赵小蒙 committed
33
34
from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap

许瑞's avatar
许瑞 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

def txt_spans_extract(pdf_page, inline_equations, interline_equations):
    text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
    char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
        "blocks"
    ]
    text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
    text_blocks = replace_equations_in_textblock(
        text_blocks, inline_equations, interline_equations
    )
    text_blocks = remove_citation_marker(text_blocks)
    text_blocks = remove_chars_in_text_blocks(text_blocks)
    spans = []
    for v in text_blocks:
        for line in v["lines"]:
            for span in line["spans"]:
51
52
53
                bbox = span["bbox"]
                if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
                    continue
赵小蒙's avatar
赵小蒙 committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                if span.get('type') == ContentType.InlineEquation:
                    spans.append(
                        {
                            "bbox": list(span["bbox"]),
                            "content": span["latex"],
                            "type": ContentType.InlineEquation,
                        }
                    )
                elif span.get('type') == ContentType.InterlineEquation:
                    spans.append(
                        {
                            "bbox": list(span["bbox"]),
                            "content": span["latex"],
                            "type": ContentType.InterlineEquation,
                        }
                    )
                else:
                    spans.append(
                        {
                            "bbox": list(span["bbox"]),
                            "content": span["text"],
                            "type": ContentType.Text,
                        }
                    )
许瑞's avatar
许瑞 committed
78
79
80
    return spans


赵小蒙's avatar
赵小蒙 committed
81

许瑞's avatar
许瑞 committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def replace_text_span(pymu_spans, ocr_spans):
    return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans


def parse_pdf_by_txt(
    pdf_bytes,
    model_list,
    imageWriter,
    start_page_id=0,
    end_page_id=None,
    debug_mode=False,
):
    pdf_bytes_md5 = compute_md5(pdf_bytes)
    pdf_docs = fitz.open("pdf", pdf_bytes)

    """初始化空的pdf_info_dict"""
    pdf_info_dict = {}

    """用model_list和docs对象初始化magic_model"""
    magic_model = MagicModel(model_list, pdf_docs)

    """根据输入的起始范围解析pdf"""
    end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1

    """初始化启动时间"""
    start_time = time.time()

    for page_id in range(start_page_id, end_page_id + 1):

        """debug时输出每页解析的耗时"""
        if debug_mode:
            time_now = time.time()
            logger.info(
                f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
            )
            start_time = time_now

        """从magic_model对象中获取后面会用到的区块信息"""
        img_blocks = magic_model.get_imgs(page_id)
        table_blocks = magic_model.get_tables(page_id)
        discarded_blocks = magic_model.get_discarded(page_id)
        text_blocks = magic_model.get_text_blocks(page_id)
        title_blocks = magic_model.get_title_blocks(page_id)
        inline_equations, interline_equations, interline_equation_blocks = (
            magic_model.get_equations(page_id)
        )

        page_w, page_h = magic_model.get_page_size(page_id)

        """将所有区块的bbox整理到一起"""
        all_bboxes = ocr_prepare_bboxes_for_layout_split(
            img_blocks,
            table_blocks,
            discarded_blocks,
            text_blocks,
            title_blocks,
赵小蒙's avatar
赵小蒙 committed
138
            interline_equations,
许瑞's avatar
许瑞 committed
139
140
141
142
            page_w,
            page_h,
        )

赵小蒙's avatar
赵小蒙 committed
143
144
145
146
147
148
149
150
151
152
153
154
155
        """在切分之前,先检查一下bbox是否有左右重叠的情况,如果有,那么就认为这个pdf暂时没有能力处理好,这种左右重叠的情况大概率是由于pdf里的行间公式、表格没有被正确识别出来造成的 """
        useful_blocks = []
        for bbox in all_bboxes:
            useful_blocks.append({
                "bbox": bbox[:4]
            })
        is_useful_block_horz_overlap = check_useful_block_horizontal_overlap(useful_blocks)
        if is_useful_block_horz_overlap:
            logger.warning(
                f"pdf: {pdf_bytes_md5}, skip this page, page_id: {page_id}, reason: {DropReason.TEXT_BLCOK_HOR_OVERLAP}")
            continue

        '''根据区块信息计算layout'''
许瑞's avatar
许瑞 committed
156
        page_boundry = [0, 0, page_w, page_h]
赵小蒙's avatar
赵小蒙 committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        layout_bboxes, layout_tree = get_bboxes_layout(all_bboxes, page_boundry, page_id)

        if len(text_blocks) > 0 and len(all_bboxes) > 0 and len(layout_bboxes) == 0:
            logger.warning(
                f"pdf: {pdf_bytes_md5}, skip this page, page_id: {page_id}, reason: {DropReason.CAN_NOT_DETECT_PAGE_LAYOUT}")
            continue

        """以下去掉复杂的布局和超过2列的布局"""
        if any([lay["layout_label"] == LAYOUT_UNPROC for lay in layout_bboxes]):  # 复杂的布局
            logger.warning(
                f"pdf: {pdf_bytes_md5}, skip this page, page_id: {page_id}, reason: {DropReason.COMPLICATED_LAYOUT}")
            continue

        layout_column_width = get_columns_cnt_of_layout(layout_tree)
        if layout_column_width > 2:  # 去掉超过2列的布局pdf
            logger.warning(
                f"pdf: {pdf_bytes_md5}, skip this page, page_id: {page_id}, reason: {DropReason.TOO_MANY_LAYOUT_COLUMNS}")
            continue
许瑞's avatar
许瑞 committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        """根据layout顺序,对当前页面所有需要留下的block进行排序"""
        sorted_blocks = sort_blocks_by_layout(all_bboxes, layout_bboxes)

        """ocr 中文本类的 span 用 pymu spans 替换!"""
        ocr_spans = magic_model.get_all_spans(page_id)
        pymu_spans = txt_spans_extract(
            pdf_docs[page_id], inline_equations, interline_equations
        )
        spans = replace_text_span(pymu_spans, ocr_spans)

        """删除重叠spans中较小的那些"""
        spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
        """对image和table截图"""
        spans = ocr_cut_image_and_table(
            spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter
        )

        """将span填入排好序的blocks中"""
        block_with_spans = fill_spans_in_blocks(sorted_blocks, spans)

        """对block进行fix操作"""
        fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)

        """获取QA需要外置的list"""
        images, tables, interline_equations = get_qa_need_list_v2(fix_blocks)

        """构造pdf_info_dict"""
        page_info = ocr_construct_page_component_v2(
            fix_blocks,
            layout_bboxes,
            page_id,
            page_w,
            page_h,
            layout_tree,
            images,
            tables,
            interline_equations,
            discarded_blocks,
        )
        pdf_info_dict[f"page_{page_id}"] = page_info

    """分段"""
218
219
220
221
222
    try:
        para_split(pdf_info_dict, debug_mode=debug_mode)
    except Exception as e:
        logger.exception(e)
        raise e
许瑞's avatar
许瑞 committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    """dict转list"""
    pdf_info_list = dict_to_list(pdf_info_dict)
    new_pdf_info_dict = {
        "pdf_info": pdf_info_list,
    }

    return new_pdf_info_dict


if __name__ == "__main__":
    if 1:
        import fitz
        import json

        with open("/opt/data/pdf/20240418/25536-00.pdf", "rb") as f:
            pdf_bytes = f.read()
        pdf_docs = fitz.open("pdf", pdf_bytes)

        with open("/opt/data/pdf/20240418/25536-00.json") as f:
            model_list = json.loads(f.readline())

        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))

        for page_no, page in enumerate(pdf_docs):
            inline_equations, interline_equations, interline_equation_blocks = (
                magic_model.get_equations(page_no)
            )

            text_raw_blocks = page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
            char_level_text_blocks = page.get_text(
                "rawdict", flags=fitz.TEXTFLAGS_TEXT
            )["blocks"]
            text_blocks = combine_chars_to_pymudict(
                text_raw_blocks, char_level_text_blocks
            )
            text_blocks = replace_equations_in_textblock(
                text_blocks, inline_equations, interline_equations
            )
            text_blocks = remove_citation_marker(text_blocks)

            text_blocks = remove_chars_in_text_blocks(text_blocks)