pdf_parse_by_txt_v2.py 7.48 KB
Newer Older
许瑞's avatar
许瑞 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import time

from loguru import logger

from magic_pdf.layout.layout_sort import get_bboxes_layout
from magic_pdf.libs.convert_utils import dict_to_list
from magic_pdf.libs.hash_utils import compute_md5
from magic_pdf.libs.commons import fitz, get_delta_time
from magic_pdf.model.magic_model import MagicModel
from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split
from magic_pdf.pre_proc.ocr_dict_merge import (
    sort_blocks_by_layout,
    fill_spans_in_blocks,
    fix_block_spans,
)
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.pre_proc.ocr_span_list_modify import (
    remove_overlaps_min_spans,
    get_qa_need_list_v2,
)
from magic_pdf.pre_proc.equations_replace import (
    combine_chars_to_pymudict,
    remove_chars_in_text_blocks,
    replace_equations_in_textblock,
)
from magic_pdf.pre_proc.equations_replace import (
    combine_chars_to_pymudict,
    remove_chars_in_text_blocks,
    replace_equations_in_textblock,
)
from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
34
35
from magic_pdf.libs.math import float_equal
from magic_pdf.para.para_split_v2 import para_split
许瑞's avatar
许瑞 committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

def txt_spans_extract(pdf_page, inline_equations, interline_equations):
    text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
    char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
        "blocks"
    ]
    text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
    text_blocks = replace_equations_in_textblock(
        text_blocks, inline_equations, interline_equations
    )
    text_blocks = remove_citation_marker(text_blocks)
    text_blocks = remove_chars_in_text_blocks(text_blocks)
    spans = []
    for v in text_blocks:
        for line in v["lines"]:
            for span in line["spans"]:
52
53
54
                bbox = span["bbox"]
                if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
                    continue
许瑞's avatar
许瑞 committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                spans.append(
                    {
                        "bbox": list(span["bbox"]),
                        "content": span["text"],
                        "type": ContentType.Text,
                    }
                )
    return spans


def replace_text_span(pymu_spans, ocr_spans):
    return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans


def parse_pdf_by_txt(
    pdf_bytes,
    model_list,
    imageWriter,
    start_page_id=0,
    end_page_id=None,
    debug_mode=False,
):
    pdf_bytes_md5 = compute_md5(pdf_bytes)
    pdf_docs = fitz.open("pdf", pdf_bytes)

    """初始化空的pdf_info_dict"""
    pdf_info_dict = {}

    """用model_list和docs对象初始化magic_model"""
    magic_model = MagicModel(model_list, pdf_docs)

    """根据输入的起始范围解析pdf"""
    end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1

    """初始化启动时间"""
    start_time = time.time()

    for page_id in range(start_page_id, end_page_id + 1):

        """debug时输出每页解析的耗时"""
        if debug_mode:
            time_now = time.time()
            logger.info(
                f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
            )
            start_time = time_now

        """从magic_model对象中获取后面会用到的区块信息"""
        img_blocks = magic_model.get_imgs(page_id)
        table_blocks = magic_model.get_tables(page_id)
        discarded_blocks = magic_model.get_discarded(page_id)
        text_blocks = magic_model.get_text_blocks(page_id)
        title_blocks = magic_model.get_title_blocks(page_id)
        inline_equations, interline_equations, interline_equation_blocks = (
            magic_model.get_equations(page_id)
        )

        page_w, page_h = magic_model.get_page_size(page_id)

        """将所有区块的bbox整理到一起"""
        all_bboxes = ocr_prepare_bboxes_for_layout_split(
            img_blocks,
            table_blocks,
            discarded_blocks,
            text_blocks,
            title_blocks,
            interline_equation_blocks,
            page_w,
            page_h,
        )

        """根据区块信息计算layout"""
        page_boundry = [0, 0, page_w, page_h]
        layout_bboxes, layout_tree = get_bboxes_layout(
            all_bboxes, page_boundry, page_id
        )

        """根据layout顺序,对当前页面所有需要留下的block进行排序"""
        sorted_blocks = sort_blocks_by_layout(all_bboxes, layout_bboxes)

        """ocr 中文本类的 span 用 pymu spans 替换!"""
        ocr_spans = magic_model.get_all_spans(page_id)
        pymu_spans = txt_spans_extract(
            pdf_docs[page_id], inline_equations, interline_equations
        )
        spans = replace_text_span(pymu_spans, ocr_spans)

        """删除重叠spans中较小的那些"""
        spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
        """对image和table截图"""
        spans = ocr_cut_image_and_table(
            spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter
        )

        """将span填入排好序的blocks中"""
        block_with_spans = fill_spans_in_blocks(sorted_blocks, spans)

        """对block进行fix操作"""
        fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)

        """获取QA需要外置的list"""
        images, tables, interline_equations = get_qa_need_list_v2(fix_blocks)

        """构造pdf_info_dict"""
        page_info = ocr_construct_page_component_v2(
            fix_blocks,
            layout_bboxes,
            page_id,
            page_w,
            page_h,
            layout_tree,
            images,
            tables,
            interline_equations,
            discarded_blocks,
        )
        pdf_info_dict[f"page_{page_id}"] = page_info

    """分段"""
174
175
176
177
178
    try:
        para_split(pdf_info_dict, debug_mode=debug_mode)
    except Exception as e:
        logger.exception(e)
        raise e
许瑞's avatar
许瑞 committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

    """dict转list"""
    pdf_info_list = dict_to_list(pdf_info_dict)
    new_pdf_info_dict = {
        "pdf_info": pdf_info_list,
    }

    return new_pdf_info_dict


if __name__ == "__main__":
    if 1:
        import fitz
        import json

        with open("/opt/data/pdf/20240418/25536-00.pdf", "rb") as f:
            pdf_bytes = f.read()
        pdf_docs = fitz.open("pdf", pdf_bytes)

        with open("/opt/data/pdf/20240418/25536-00.json") as f:
            model_list = json.loads(f.readline())

        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))

        for page_no, page in enumerate(pdf_docs):
            inline_equations, interline_equations, interline_equation_blocks = (
                magic_model.get_equations(page_no)
            )

            text_raw_blocks = page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
            char_level_text_blocks = page.get_text(
                "rawdict", flags=fitz.TEXTFLAGS_TEXT
            )["blocks"]
            text_blocks = combine_chars_to_pymudict(
                text_raw_blocks, char_level_text_blocks
            )
            text_blocks = replace_equations_in_textblock(
                text_blocks, inline_equations, interline_equations
            )
            text_blocks = remove_citation_marker(text_blocks)

            text_blocks = remove_chars_in_text_blocks(text_blocks)