pdf_extract_kit.py 8.18 KB
Newer Older
赵小蒙's avatar
update:  
赵小蒙 committed
1
import os
2
import cv2
赵小蒙's avatar
update:  
赵小蒙 committed
3
import yaml
4
5
6
7
import time
import argparse
import numpy as np
import torch
8
from loguru import logger
9

10
11
12
13
14
from paddleocr import draw_ocr
from PIL import Image
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from ultralytics import YOLO
赵小蒙's avatar
update:  
赵小蒙 committed
15
from unimernet.common.config import Config
16
import unimernet.tasks as tasks
赵小蒙's avatar
update:  
赵小蒙 committed
17
18
from unimernet.processors import load_processor

19
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
20
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
21
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
赵小蒙's avatar
update:  
赵小蒙 committed
22
23


24
25
26
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
27
28


29
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
30
31
32
33
34
35
36
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
37
    model = model.to(_device_)
38
39
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
40
41


42
43
44
45
46
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
63
            return image
64
65


66
class CustomPEKModel:
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
        with open(config_path, "r") as f:
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr
赵小蒙's avatar
update:  
赵小蒙 committed
91
            )
92
93
94
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
95
        self.device = kwargs.get("device", self.configs["config"]["device"])
96
        logger.info("using device: {}".format(self.device))
97
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
98

99
100
101
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
102
103
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

104
            # 初始化公式解析模型
105
106
107
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
108
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
109
110
111
112
113
114
115

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
116
117
118
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
119

120
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
121

122
123
    def __call__(self, image):

124
125
126
        latex_filling_list = []
        mf_image_list = []

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

        # 公式检测
        mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
        for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
            xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
            new_item = {
                'category_id': 13 + int(cla.item()),
                'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                'score': round(float(conf.item()), 2),
                'latex': '',
            }
            layout_res.append(new_item)
            latex_filling_list.append(new_item)
            bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
            mf_image_list.append(bbox_img)

        # 公式识别
        mfr_start = time.time()
150
        dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
151
        dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
152
        mfr_res = []
153
154
155
        for mf_img in dataloader:
            mf_img = mf_img.to(self.device)
            output = self.mfr_model.generate({'image': mf_img})
156
157
158
            mfr_res.extend(output['pred_str'])
        for res, latex in zip(latex_filling_list, mfr_res):
            res['latex'] = latex_rm_whitespace(latex)
159
160
        mfr_cost = round(time.time() - mfr_start, 2)
        logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
161

myhloli's avatar
myhloli committed
162
        # ocr识别
163
        if self.apply_ocr:
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            ocr_start = time.time()
            pil_img = Image.fromarray(image)
            single_page_mfdetrec_res = []
            for res in layout_res:
                if int(res['category_id']) in [13, 14]:
                    xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                    xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                    single_page_mfdetrec_res.append({
                        "bbox": [xmin, ymin, xmax, ymax],
                    })
            for res in layout_res:
                if int(res['category_id']) in [0, 1, 2, 4, 6, 7]:  # 需要进行ocr的类别
                    xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                    xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                    crop_box = (xmin, ymin, xmax, ymax)
                    cropped_img = Image.new('RGB', pil_img.size, 'white')
                    cropped_img.paste(pil_img.crop(crop_box), crop_box)
                    cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
                    ocr_res = self.ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
                    if ocr_res:
                        for box_ocr_res in ocr_res:
                            p1, p2, p3, p4 = box_ocr_res[0]
                            text, score = box_ocr_res[1]
                            layout_res.append({
                                'category_id': 15,
                                'poly': p1 + p2 + p3 + p4,
                                'score': round(score, 2),
                                'text': text,
                            })
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

        return layout_res