README.md 51.6 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
13
14
15
16
[![PyPI version](https://img.shields.io/pypi/v/mineru)](https://pypi.org/project/mineru/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru)
[![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru)
17
[![OpenDataLab](https://img.shields.io/badge/webapp_on_mineru.net-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
18
19
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
myhloli's avatar
myhloli committed
20
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
myhloli's avatar
myhloli committed
21
[![arXiv](https://img.shields.io/badge/arXiv-2409.18839-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2409.18839)
22
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/opendatalab/MinerU)
23

myhloli's avatar
myhloli committed
24

xuchao's avatar
xuchao committed
25
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
26

xuchao's avatar
xuchao committed
27
<!-- language -->
28

xuchao's avatar
xuchao committed
29
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
30

xuchao's avatar
xuchao committed
31
<!-- hot link -->
32

徐超's avatar
徐超 committed
33
<p align="center">
34
🚀<a href="https://mineru.net/?source=github">Access MinerU Now→✅ Zero-Install Web Version ✅ Full-Featured Desktop Client ✅ Instant API Access; Skip deployment headaches – get all product formats in one click. Developers, dive in!</a>
徐超's avatar
徐超 committed
35
36
</p>

xuchao's avatar
xuchao committed
37
<!-- join us -->
38

徐超's avatar
徐超 committed
39
<p align="center">
40
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="http://mineru.space/s/V85Yl" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
41
</p>
赵小蒙's avatar
赵小蒙 committed
42

xuchao's avatar
xuchao committed
43
</div>
赵小蒙's avatar
赵小蒙 committed
44

xuchao's avatar
xuchao committed
45
# Changelog
46

47
48
49
50
51
52
53
54
- 2025/07/16 2.1.1 Released
  - Bug fixes
    - Fixed text block content loss issue that could occur in certain `pipeline` scenarios #3005
    - Fixed issue where `sglang-client` required unnecessary packages like `torch` #2968
    - Updated `dockerfile` to fix incomplete text content parsing due to missing fonts in Linux #2915
  - Usability improvements
    - Updated `compose.yaml` to facilitate direct startup of `sglang-server`, `mineru-api`, and `mineru-gradio` services
    - Launched brand new [online documentation site](https://opendatalab.github.io/MinerU/), simplified readme, providing better documentation experience
55
- 2025/07/05 Version 2.1.0 Released
56
  - This is the first major update of MinerU 2, which includes a large number of new features and improvements, covering significant performance optimizations, user experience enhancements, and bug fixes. The detailed update contents are as follows:
57
58
59
60
61
  - **Performance Optimizations:**
    - Significantly improved preprocessing speed for documents with specific resolutions (around 2000 pixels on the long side).
    - Greatly enhanced post-processing speed when the `pipeline` backend handles batch processing of documents with fewer pages (<10 pages).
    - Layout analysis speed of the `pipeline` backend has been increased by approximately 20%.
  - **Experience Enhancements:**
62
    - Built-in ready-to-use `fastapi service` and `gradio webui`. For detailed usage instructions, please refer to [Documentation](https://opendatalab.github.io/MinerU/usage/quick_usage/#advanced-usage-via-api-webui-sglang-clientserver).
63
64
    - Adapted to `sglang` version `0.4.8`, significantly reducing the GPU memory requirements for the `vlm-sglang` backend. It can now run on graphics cards with as little as `8GB GPU memory` (Turing architecture or newer).
    - Added transparent parameter passing for all commands related to `sglang`, allowing the `sglang-engine` backend to receive all `sglang` parameters consistently with the `sglang-server`.
65
    - Supports feature extensions based on configuration files, including `custom formula delimiters`, `enabling heading classification`, and `customizing local model directories`. For detailed usage instructions, please refer to [Documentation](https://opendatalab.github.io/MinerU/usage/quick_usage/#extending-mineru-functionality-with-configuration-files).
66
67
68
  - **New Features:**
    - Updated the `pipeline` backend with the PP-OCRv5 multilingual text recognition model, supporting text recognition in 37 languages such as French, Spanish, Portuguese, Russian, and Korean, with an average accuracy improvement of over 30%. [Details](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/algorithm/PP-OCRv5/PP-OCRv5_multi_languages.html)
    - Introduced limited support for vertical text layout in the `pipeline` backend.
69
70

<details>
71
  <summary>History Log</summary>
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  <details>
    <summary>2025/06/20 2.0.6 Released</summary>
    <ul>
      <li>Fixed occasional parsing interruptions caused by invalid block content in <code>vlm</code> mode</li>
      <li>Fixed parsing interruptions caused by incomplete table structures in <code>vlm</code> mode</li>
    </ul>
  </details>
  
  <details>
    <summary>2025/06/17 2.0.5 Released</summary>
    <ul>
      <li>Fixed the issue where models were still required to be downloaded in the <code>sglang-client</code> mode</li>
      <li>Fixed the issue where the <code>sglang-client</code> mode unnecessarily depended on packages like <code>torch</code> during runtime.</li>
      <li>Fixed the issue where only the first instance would take effect when attempting to launch multiple <code>sglang-client</code> instances via multiple URLs within the same process</li>
    </ul>
  </details>
  
  <details>
    <summary>2025/06/15 2.0.3 released</summary>
    <ul>
      <li>Fixed a configuration file key-value update error that occurred when downloading model type was set to <code>all</code></li>
      <li>Fixed the issue where the formula and table feature toggle switches were not working in <code>command line mode</code>, causing the features to remain enabled.</li>
      <li>Fixed compatibility issues with sglang version 0.4.7 in the <code>sglang-engine</code> mode.</li>
      <li>Updated Dockerfile and installation documentation for deploying the full version of MinerU in sglang environment</li>
    </ul>
  </details>
  
  <details>
    <summary>2025/06/13 2.0.0 Released</summary>
    <ul>
      <li><strong>New Architecture</strong>: MinerU 2.0 has been deeply restructured in code organization and interaction methods, significantly improving system usability, maintainability, and extensibility.
        <ul>
          <li><strong>Removal of Third-party Dependency Limitations</strong>: Completely eliminated the dependency on <code>pymupdf</code>, moving the project toward a more open and compliant open-source direction.</li>
          <li><strong>Ready-to-use, Easy Configuration</strong>: No need to manually edit JSON configuration files; most parameters can now be set directly via command line or API.</li>
          <li><strong>Automatic Model Management</strong>: Added automatic model download and update mechanisms, allowing users to complete model deployment without manual intervention.</li>
          <li><strong>Offline Deployment Friendly</strong>: Provides built-in model download commands, supporting deployment requirements in completely offline environments.</li>
          <li><strong>Streamlined Code Structure</strong>: Removed thousands of lines of redundant code, simplified class inheritance logic, significantly improving code readability and development efficiency.</li>
          <li><strong>Unified Intermediate Format Output</strong>: Adopted standardized <code>middle_json</code> format, compatible with most secondary development scenarios based on this format, ensuring seamless ecosystem business migration.</li>
        </ul>
      </li>
      <li><strong>New Model</strong>: MinerU 2.0 integrates our latest small-parameter, high-performance multimodal document parsing model, achieving end-to-end high-speed, high-precision document understanding.
        <ul>
          <li><strong>Small Model, Big Capabilities</strong>: With parameters under 1B, yet surpassing traditional 72B-level vision-language models (VLMs) in parsing accuracy.</li>
          <li><strong>Multiple Functions in One</strong>: A single model covers multilingual recognition, handwriting recognition, layout analysis, table parsing, formula recognition, reading order sorting, and other core tasks.</li>
          <li><strong>Ultimate Inference Speed</strong>: Achieves peak throughput exceeding 10,000 tokens/s through <code>sglang</code> acceleration on a single NVIDIA 4090 card, easily handling large-scale document processing requirements.</li>
          <li><strong>Online Experience</strong>: You can experience our brand-new VLM model on <a href="https://mineru.net/OpenSourceTools/Extractor">MinerU.net</a>, <a href="https://huggingface.co/spaces/opendatalab/MinerU">Hugging Face</a>, and <a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">ModelScope</a>.</li>
        </ul>
      </li>
      <li><strong>Incompatible Changes Notice</strong>: To improve overall architectural rationality and long-term maintainability, this version contains some incompatible changes:
        <ul>
          <li>Python package name changed from <code>magic-pdf</code> to <code>mineru</code>, and the command-line tool changed from <code>magic-pdf</code> to <code>mineru</code>. Please update your scripts and command calls accordingly.</li>
          <li>For modular system design and ecosystem consistency considerations, MinerU 2.0 no longer includes the LibreOffice document conversion module. If you need to process Office documents, we recommend converting them to PDF format through an independently deployed LibreOffice service before proceeding with subsequent parsing operations.</li>
        </ul>
      </li>
    </ul>
  </details>
128
129
130
131
132
133
134
135
  <details>
  <summary>2025/05/24 Release 1.3.12</summary>
  <ul>
      <li>Added support for PPOCRv5 models, updated <code>ch_server</code> model to <code>PP-OCRv5_rec_server</code>, and <code>ch_lite</code> model to <code>PP-OCRv5_rec_mobile</code> (model update required)
        <ul>
          <li>In testing, we found that PPOCRv5(server) has some improvement for handwritten documents, but has slightly lower accuracy than v4_server_doc for other document types, so the default ch model remains unchanged as <code>PP-OCRv4_server_rec_doc</code>.</li>
          <li>Since PPOCRv5 has enhanced recognition capabilities for handwriting and special characters, you can manually choose the PPOCRv5 model for Japanese-Traditional Chinese mixed scenarios and handwritten documents</li>
          <li>You can select the appropriate model through the lang parameter <code>lang='ch_server'</code> (Python API) or <code>--lang ch_server</code> (command line):
xuchao's avatar
xuchao committed
136
            <ul>
137
138
139
140
141
              <li><code>ch</code>: <code>PP-OCRv4_server_rec_doc</code> (default) (Chinese/English/Japanese/Traditional Chinese mixed/15K dictionary)</li>
              <li><code>ch_server</code>: <code>PP-OCRv5_rec_server</code> (Chinese/English/Japanese/Traditional Chinese mixed + handwriting/18K dictionary)</li>
              <li><code>ch_lite</code>: <code>PP-OCRv5_rec_mobile</code> (Chinese/English/Japanese/Traditional Chinese mixed + handwriting/18K dictionary)</li>
              <li><code>ch_server_v4</code>: <code>PP-OCRv4_rec_server</code> (Chinese/English mixed/6K dictionary)</li>
              <li><code>ch_lite_v4</code>: <code>PP-OCRv4_rec_mobile</code> (Chinese/English mixed/6K dictionary)</li>
xuchao's avatar
xuchao committed
142
            </ul>
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
          </li>
        </ul>
      </li>
      <li>Added support for handwritten documents through optimized layout recognition of handwritten text areas
        <ul>
          <li>This feature is supported by default, no additional configuration required</li>
          <li>You can refer to the instructions above to manually select the PPOCRv5 model for better handwritten document parsing results</li>
        </ul>
      </li>
      <li>The <code>huggingface</code> and <code>modelscope</code> demos have been updated to versions that support handwriting recognition and PPOCRv5 models, which you can experience online</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/29 Release 1.3.10</summary>
  <ul>
      <li>Added support for custom formula delimiters, which can be configured by modifying the <code>latex-delimiter-config</code> section in the <code>magic-pdf.json</code> file in your user directory.</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/27 Release 1.3.9</summary>
  <ul>
      <li>Optimized formula parsing functionality, improved formula rendering success rate</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/23 Release 1.3.8</summary>
  <ul>
      <li>The default <code>ocr</code> model (<code>ch</code>) has been updated to <code>PP-OCRv4_server_rec_doc</code> (model update required)
        <ul>
          <li><code>PP-OCRv4_server_rec_doc</code> is trained on a mixture of more Chinese document data and PP-OCR training data based on <code>PP-OCRv4_server_rec</code>, adding recognition capabilities for some traditional Chinese characters, Japanese, and special characters. It can recognize over 15,000 characters and improves both document-specific and general text recognition abilities.</li>
          <li><a href="https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html#_3">Performance comparison of PP-OCRv4_server_rec_doc/PP-OCRv4_server_rec/PP-OCRv4_mobile_rec</a></li>
          <li>After verification, the <code>PP-OCRv4_server_rec_doc</code> model shows significant accuracy improvements in Chinese/English/Japanese/Traditional Chinese in both single language and mixed language scenarios, with comparable speed to <code>PP-OCRv4_server_rec</code>, making it suitable for most use cases.</li>
          <li>In some pure English scenarios, <code>PP-OCRv4_server_rec_doc</code> may have word adhesion issues, while <code>PP-OCRv4_server_rec</code> performs better in these cases. Therefore, we've kept the <code>PP-OCRv4_server_rec</code> model, which users can access by adding the parameter <code>lang='ch_server'</code> (Python API) or <code>--lang ch_server</code> (command line).</li>
        </ul>
      </li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/22 Release 1.3.7</summary>
  <ul>
      <li>Fixed the issue where the lang parameter was ineffective during table parsing model initialization</li>
      <li>Fixed the significant speed reduction of OCR and table parsing in <code>cpu</code> mode</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/16 Release 1.3.4</summary>
  <ul>
      <li>Slightly improved OCR-det speed by removing some unnecessary blocks</li>
      <li>Fixed page-internal sorting errors caused by footnotes in certain cases</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/12 Release 1.3.2</summary>
  <ul>
      <li>Fixed dependency version incompatibility issues when installing on Windows with Python 3.13</li>
      <li>Optimized memory usage during batch inference</li>
      <li>Improved parsing of tables rotated 90 degrees</li>
      <li>Enhanced parsing of oversized tables in financial report samples</li>
      <li>Fixed the occasional word adhesion issue in English text areas when OCR language is not specified (model update required)</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/08 Release 1.3.1</summary>
  <ul>
      <li>Fixed several compatibility issues
        <ul>
          <li>Added support for Python 3.13</li>
          <li>Made final adaptations for outdated Linux systems (such as CentOS 7) with no guarantee of continued support in future versions, <a href="https://github.com/opendatalab/MinerU/issues/1004">installation instructions</a></li>
        </ul>
      </li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/03 Release 1.3.0</summary>
  <ul>
      <li>Installation and compatibility optimizations
        <ul>
          <li>Resolved compatibility issues caused by <code>detectron2</code> by removing <code>layoutlmv3</code> usage in layout</li>
          <li>Extended torch version compatibility to 2.2~2.6 (excluding 2.5)</li>
          <li>Added CUDA compatibility for versions 11.8/12.4/12.6/12.8 (CUDA version determined by torch), solving compatibility issues for users with 50-series and H-series GPUs</li>
          <li>Extended Python compatibility to versions 3.10~3.12, fixing the issue of automatic downgrade to version 0.6.1 when installing in non-3.10 environments</li>
          <li>Optimized offline deployment process, eliminating the need to download any model files after successful deployment</li>
        </ul>
      </li>
      <li>Performance optimizations
        <ul>
          <li>Enhanced parsing speed for batches of small files by supporting batch processing of multiple PDF files (<a href="demo/batch_demo.py">script example</a>), with formula parsing speed improved by up to 1400% and overall parsing speed improved by up to 500% compared to version 1.0.1</li>
          <li>Reduced memory usage and improved parsing speed by optimizing MFR model loading and usage (requires re-running the <a href="docs/how_to_download_models_zh_cn.md">model download process</a> to get incremental updates to model files)</li>
          <li>Optimized GPU memory usage, requiring only 6GB minimum to run this project</li>
          <li>Improved running speed on MPS devices</li>
        </ul>
      </li>
      <li>Parsing effect optimizations
        <ul>
          <li>Updated MFR model to <code>unimernet(2503)</code>, fixing line break loss issues in multi-line formulas</li>
        </ul>
      </li>
      <li>Usability optimizations
        <ul>
          <li>Completely replaced the <code>paddle</code> framework and <code>paddleocr</code> in the project by using <code>paddleocr2torch</code>, resolving conflicts between <code>paddle</code> and <code>torch</code>, as well as thread safety issues caused by the <code>paddle</code> framework</li>
          <li>Added real-time progress bar display during parsing, allowing precise tracking of parsing progress and making the waiting process more bearable</li>
        </ul>
      </li>
  </ul>
  </details>
  <details>
  <summary>2025/03/03 1.2.1 released</summary>
  <ul>
    <li>Fixed the impact on punctuation marks during full-width to half-width conversion of letters and numbers</li>
    <li>Fixed caption matching inaccuracies in certain scenarios</li>
    <li>Fixed formula span loss issues in certain scenarios</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/02/24 1.2.0 released</summary>
  <p>This version includes several fixes and improvements to enhance parsing efficiency and accuracy:</p>
  <ul>
    <li><strong>Performance Optimization</strong>
      <ul>
        <li>Increased classification speed for PDF documents in auto mode.</li>
      </ul>
    </li>
    <li><strong>Parsing Optimization</strong>
      <ul>
        <li>Improved parsing logic for documents containing watermarks, significantly enhancing the parsing results for such documents.</li>
        <li>Enhanced the matching logic for multiple images/tables and captions within a single page, improving the accuracy of image-text matching in complex layouts.</li>
      </ul>
    </li>
    <li><strong>Bug Fixes</strong>
      <ul>
        <li>Fixed an issue where image/table spans were incorrectly filled into text blocks under certain conditions.</li>
        <li>Resolved an issue where title blocks were empty in some cases.</li>
xuchao's avatar
xuchao committed
284
285
      </ul>
    </li>
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  </ul>
  </details>
  
  <details>
  <summary>2025/01/22 1.1.0 released</summary>
  <p>In this version we have focused on improving parsing accuracy and efficiency:</p>
  <ul>
    <li><strong>Model capability upgrade</strong> (requires re-executing the <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">model download process</a> to obtain incremental updates of model files)
      <ul>
        <li>The layout recognition model has been upgraded to the latest <code>doclayout_yolo(2501)</code> model, improving layout recognition accuracy.</li>
        <li>The formula parsing model has been upgraded to the latest <code>unimernet(2501)</code> model, improving formula recognition accuracy.</li>
      </ul>
    </li>
    <li><strong>Performance optimization</strong>
      <ul>
        <li>On devices that meet certain configuration requirements (16GB+ VRAM), by optimizing resource usage and restructuring the processing pipeline, overall parsing speed has been increased by more than 50%.</li>
      </ul>
    </li>
    <li><strong>Parsing effect optimization</strong>
      <ul>
        <li>Added a new heading classification feature (testing version, enabled by default) to the online demo (<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a>/<a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a>/<a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>), which supports hierarchical classification of headings, thereby enhancing document structuring.</li>
      </ul>
    </li>
  </ul>
  </details>
  
  <details>
  <summary>2025/01/10 1.0.1 released</summary>
  <p>This is our first official release, where we have introduced a completely new API interface and enhanced compatibility through extensive refactoring, as well as a brand new automatic language identification feature:</p>
  <ul>
    <li><strong>New API Interface</strong>
      <ul>
        <li>For the data-side API, we have introduced the Dataset class, designed to provide a robust and flexible data processing framework. This framework currently supports a variety of document formats, including images (.jpg and .png), PDFs, Word documents (.doc and .docx), and PowerPoint presentations (.ppt and .pptx). It ensures effective support for data processing tasks ranging from simple to complex.</li>
        <li>For the user-side API, we have meticulously designed the MinerU processing workflow as a series of composable Stages. Each Stage represents a specific processing step, allowing users to define new Stages according to their needs and creatively combine these stages to customize their data processing workflows.</li>
      </ul>
    </li>
    <li><strong>Enhanced Compatibility</strong>
      <ul>
        <li>By optimizing the dependency environment and configuration items, we ensure stable and efficient operation on ARM architecture Linux systems.</li>
        <li>We have deeply integrated with Huawei Ascend NPU acceleration, providing autonomous and controllable high-performance computing capabilities. This supports the localization and development of AI application platforms in China. <a href="https://github.com/opendatalab/MinerU/blob/master/docs/README_Ascend_NPU_Acceleration_zh_CN.md">Ascend NPU Acceleration</a></li>
      </ul>
    </li>
    <li><strong>Automatic Language Identification</strong>
      <ul>
        <li>By introducing a new language recognition model, setting the <code>lang</code> configuration to <code>auto</code> during document parsing will automatically select the appropriate OCR language model, improving the accuracy of scanned document parsing.</li>
      </ul>
    </li>
  </ul>
  </details>
  
  <details>
  <summary>2024/11/22 0.10.0 released</summary>
  <p>Introducing hybrid OCR text extraction capabilities:</p>
  <ul>
    <li>Significantly improved parsing performance in complex text distribution scenarios such as dense formulas, irregular span regions, and text represented by images.</li>
    <li>Combines the dual advantages of accurate content extraction and faster speed in text mode, and more precise span/line region recognition in OCR mode.</li>
  </ul>
  </details>
  
  <details>
  <summary>2024/11/15 0.9.3 released</summary>
  <p>Integrated <a href="https://github.com/RapidAI/RapidTable">RapidTable</a> for table recognition, improving single-table parsing speed by more than 10 times, with higher accuracy and lower GPU memory usage.</p>
  </details>
  
  <details>
  <summary>2024/11/06 0.9.2 released</summary>
  <p>Integrated the <a href="https://huggingface.co/U4R/StructTable-InternVL2-1B">StructTable-InternVL2-1B</a> model for table recognition functionality.</p>
  </details>
  
  <details>
  <summary>2024/10/31 0.9.0 released</summary>
  <p>This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:</p>
  <ul>
    <li>Refactored the sorting module code to use <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> for reading order sorting, ensuring high accuracy in various layouts.</li>
    <li>Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.</li>
    <li>Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.</li>
    <li>Refactored the matching logic for figures, tables, and descriptive text, greatly enhancing the accuracy of matching captions and footnotes to figures and tables, and reducing the loss rate of descriptive text to near zero.</li>
    <li>Added multi-language support for OCR, supporting detection and recognition of 84 languages. For the list of supported languages, see <a href="https://paddlepaddle.github.io/PaddleOCR/latest/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations">OCR Language Support List</a>.</li>
    <li>Added memory recycling logic and other memory optimization measures, significantly reducing memory usage. The memory requirement for enabling all acceleration features except table acceleration (layout/formula/OCR) has been reduced from 16GB to 8GB, and the memory requirement for enabling all acceleration features has been reduced from 24GB to 10GB.</li>
    <li>Optimized configuration file feature switches, adding an independent formula detection switch to significantly improve speed and parsing results when formula detection is not needed.</li>
    <li>Integrated <a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit 1.0</a>:
      <ul>
        <li>Added the self-developed <code>doclayout_yolo</code> model, which speeds up processing by more than 10 times compared to the original solution while maintaining similar parsing effects, and can be freely switched with <code>layoutlmv3</code> via the configuration file.</li>
        <li>Upgraded formula parsing to <code>unimernet 0.2.1</code>, improving formula parsing accuracy while significantly reducing memory usage.</li>
        <li>Due to the repository change for <code>PDF-Extract-Kit 1.0</code>, you need to re-download the model. Please refer to <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">How to Download Models</a> for detailed steps.</li>
      </ul>
    </li>
  </ul>
  </details>
  
  <details>
  <summary>2024/09/27 Version 0.8.1 released</summary>
  <p>Fixed some bugs, and providing a <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web_demo/README.md">localized deployment version</a> of the <a href="https://opendatalab.com/OpenSourceTools/Extractor/PDF/">online demo</a> and the <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web/README.md">front-end interface</a>.</p>
  </details>
  
  <details>
  <summary>2024/09/09 Version 0.8.0 released</summary>
  <p>Supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.</p>
  </details>
  
  <details>
  <summary>2024/08/30 Version 0.7.1 released</summary>
  <p>Add paddle tablemaster table recognition option</p>
  </details>
  
  <details>
  <summary>2024/08/09 Version 0.7.0b1 released</summary>
  <p>Simplified installation process, added table recognition functionality</p>
  </details>
  
  <details>
  <summary>2024/08/01 Version 0.6.2b1 released</summary>
  <p>Optimized dependency conflict issues and installation documentation</p>
  </details>
  
  <details>
  <summary>2024/07/05 Initial open-source release</summary>
  </details>
404
405
</details>

xuchao's avatar
xuchao committed
406
# MinerU
407

xuchao's avatar
xuchao committed
408
## Project Introduction
409

xuchao's avatar
xuchao committed
410
411
412
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
413

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
414
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
415

myhloli's avatar
myhloli committed
416
417
418
419
420
421
422
## Key Features

- Remove headers, footers, footnotes, page numbers, etc., to ensure semantic coherence.
- Output text in human-readable order, suitable for single-column, multi-column, and complex layouts.
- Preserve the structure of the original document, including headings, paragraphs, lists, etc.
- Extract images, image descriptions, tables, table titles, and footnotes.
- Automatically recognize and convert formulas in the document to LaTeX format.
423
- Automatically recognize and convert tables in the document to HTML format.
myhloli's avatar
myhloli committed
424
425
426
427
- Automatically detect scanned PDFs and garbled PDFs and enable OCR functionality.
- OCR supports detection and recognition of 84 languages.
- Supports multiple output formats, such as multimodal and NLP Markdown, JSON sorted by reading order, and rich intermediate formats.
- Supports various visualization results, including layout visualization and span visualization, for efficient confirmation of output quality.
428
- Supports running in a pure CPU environment, and also supports GPU(CUDA)/NPU(CANN)/MPS acceleration
myhloli's avatar
myhloli committed
429
430
- Compatible with Windows, Linux, and Mac platforms.

431
432
# Quick Start

myhloli's avatar
myhloli committed
433
434
If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
435
436

## Online Experience
xuchao's avatar
xuchao committed
437

438
439
440
441
### Official online web application
The official online version has the same functionality as the client, with a beautiful interface and rich features, requires login to use  
 
- [![OpenDataLab](https://img.shields.io/badge/webapp_on_mineru.net-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
442

443
444
445
446
447
448
449
### Gradio-based online demo
A WebUI developed based on Gradio, with a simple interface and only core parsing functionality, no login required  

- [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
- [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)

## Local Deployment
450

myhloli's avatar
myhloli committed
451
452
453
454
455
456
457
458
459
460

> [!WARNING]
> **Pre-installation Notice—Hardware and Software Environment Support**
>
> To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.
>
> By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.
>
> In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

461
<table>
myhloli's avatar
myhloli committed
462
    <tr>
463
464
465
        <td>Parsing Backend</td>
        <td>pipeline</td>
        <td>vlm-transformers</td>
466
        <td>vlm-sglang</td>
myhloli's avatar
myhloli committed
467
468
    </tr>
    <tr>
469
        <td>Operating System</td>
470
471
472
        <td>Linux / Windows / macOS</td>
        <td>Linux / Windows</td>
        <td>Linux / Windows (via WSL2)</td>
myhloli's avatar
myhloli committed
473
    </tr>
474
475
476
477
478
479
480
    <tr>
        <td>CPU Inference Support</td>
        <td></td>
        <td colspan="2"></td>
    </tr>
    <tr>
        <td>GPU Requirements</td>
481
482
        <td>Turing architecture and later, 6GB+ VRAM or Apple Silicon</td>
        <td colspan="2">Turing architecture and later, 8GB+ VRAM</td>
483
    </tr>
myhloli's avatar
myhloli committed
484
    <tr>
485
        <td>Memory Requirements</td>
486
        <td colspan="3">Minimum 16GB+, recommended 32GB+</td>
myhloli's avatar
myhloli committed
487
    </tr>
488
    <tr>
489
490
        <td>Disk Space Requirements</td>
        <td colspan="3">20GB+, SSD recommended</td>
491
    </tr>
myhloli's avatar
myhloli committed
492
    <tr>
493
494
        <td>Python Version</td>
        <td colspan="3">3.10-3.13</td>
myhloli's avatar
myhloli committed
495
496
    </tr>
</table>
xuchao's avatar
xuchao committed
497

498
### Install MinerU
499

500
#### Install MinerU using pip or uv
501
```bash
502
503
pip install --upgrade pip
pip install uv
504
uv pip install -U "mineru[core]"
505
```
506

507
#### Install MinerU from source code
508
509
510
511
512
```bash
git clone https://github.com/opendatalab/MinerU.git
cd MinerU
uv pip install -e .[core]
```
513

514
> [!TIP]
515
516
> `mineru[core]` includes all core features except `sglang` acceleration, compatible with Windows / Linux / macOS systems, suitable for most users.
> If you need to use `sglang` acceleration for VLM model inference or install a lightweight client on edge devices, please refer to the documentation [Extension Modules Installation Guide](https://opendatalab.github.io/MinerU/quick_start/extension_modules/).
517

518
---
519
520
521
522
 
#### Deploy MinerU using Docker
MinerU provides a convenient Docker deployment method, which helps quickly set up the environment and solve some tricky environment compatibility issues.
You can get the [Docker Deployment Instructions](https://opendatalab.github.io/MinerU/quick_start/docker_deployment/) in the documentation.
523

524
---
525

526
### Using MinerU
527

528
529
530
531
532
The simplest command line invocation is:
```bash
mineru -p <input_path> -o <output_path>
```

533
You can use MinerU for PDF parsing through various methods such as command line, API, and WebUI. For detailed instructions, please refer to the [Usage Guide](https://opendatalab.github.io/MinerU/usage/).
赵小蒙's avatar
赵小蒙 committed
534

xuchao's avatar
xuchao committed
535
# TODO
赵小蒙's avatar
赵小蒙 committed
536

537
538
539
- [x] Reading order based on the model  
- [x] Recognition of `index` and `list` in the main text  
- [x] Table recognition
myhloli's avatar
myhloli committed
540
- [x] Heading Classification
541
542
543
- [x] Handwritten Text Recognition  
- [x] Vertical Text Recognition  
- [x] Latin Accent Mark Recognition
544
545
546
- [ ] Code block recognition in the main text
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
547

myhloli's avatar
myhloli committed
548
549
550
# Known Issues

- Reading order is determined by the model based on the spatial distribution of readable content, and may be out of order in some areas under extremely complex layouts.
551
- Limited support for vertical text.
myhloli's avatar
myhloli committed
552
553
554
555
556
557
558
559
560
- Tables of contents and lists are recognized through rules, and some uncommon list formats may not be recognized.
- Code blocks are not yet supported in the layout model.
- Comic books, art albums, primary school textbooks, and exercises cannot be parsed well.
- Table recognition may result in row/column recognition errors in complex tables.
- OCR recognition may produce inaccurate characters in PDFs of lesser-known languages (e.g., diacritical marks in Latin script, easily confused characters in Arabic script).
- Some formulas may not render correctly in Markdown.

# FAQ

561
- If you encounter any issues during usage, you can first check the [FAQ](https://opendatalab.github.io/MinerU/faq/) for solutions.  
562
563
- If your issue remains unresolved, you may also use [DeepWiki](https://deepwiki.com/opendatalab/MinerU) to interact with an AI assistant, which can address most common problems.  
- If you still cannot resolve the issue, you are welcome to join our community via [Discord](https://discord.gg/Tdedn9GTXq) or [WeChat](http://mineru.space/s/V85Yl) to discuss with other users and developers.
myhloli's avatar
myhloli committed
564

赵小蒙's avatar
赵小蒙 committed
565
566
# All Thanks To Our Contributors

567
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
568
569
570
571
572
573
574
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

575
Currently, some models in this project are trained based on YOLO. However, since YOLO follows the AGPL license, it may impose restrictions on certain use cases. In future iterations, we plan to explore and replace these with models under more permissive licenses to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
576
577

# Acknowledgments
578

xuchao's avatar
xuchao committed
579
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
580
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
581
- [UniMERNet](https://github.com/opendatalab/UniMERNet)
582
- [RapidTable](https://github.com/RapidAI/RapidTable)
赵小蒙's avatar
赵小蒙 committed
583
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
584
- [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch)
585
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
586
- [xy-cut](https://github.com/Sanster/xy-cut)
赵小蒙's avatar
赵小蒙 committed
587
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
588
- [pypdfium2](https://github.com/pypdfium2-team/pypdfium2)
589
- [pdftext](https://github.com/datalab-to/pdftext)
赵小蒙's avatar
赵小蒙 committed
590
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
591
- [pypdf](https://github.com/py-pdf/pypdf)
赵小蒙's avatar
赵小蒙 committed
592

赵小蒙's avatar
赵小蒙 committed
593
594
595
# Citation

```bibtex
596
597
598
599
600
601
602
603
604
605
@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

Conghui He's avatar
Conghui He committed
606
607
608
609
610
611
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}
赵小蒙's avatar
赵小蒙 committed
612
613
614
```

# Star History
赵小蒙's avatar
赵小蒙 committed
615

赵小蒙's avatar
赵小蒙 committed
616
617
618
619
620
621
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
622
</a>
qiangqiang199's avatar
qiangqiang199 committed
623

xuchao's avatar
xuchao committed
624

qiangqiang199's avatar
qiangqiang199 committed
625
# Links
626
627
- [Easy Data Preparation with latest LLMs-based Operators and Pipelines](https://github.com/OpenDCAI/DataFlow)
- [Vis3 (OSS browser based on s3)](https://github.com/opendatalab/Vis3)
qiangqiang199's avatar
qiangqiang199 committed
628
629
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
630
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)
631
632
- [OmniDocBench (A Comprehensive Benchmark for Document Parsing and Evaluation)](https://github.com/opendatalab/OmniDocBench)
- [Magic-HTML (Mixed web page extraction tool)](https://github.com/opendatalab/magic-html)
Conghui He's avatar
Conghui He committed
633
- [Magic-Doc (Fast speed ppt/pptx/doc/docx/pdf extraction tool)](https://github.com/InternLM/magic-doc)