inject_pipeline.cc 40.9 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file inject_software_pipeline.cc
 * \brief Transform annotated loops into pipelined one that parallelize
 * producers and consumers
 */
#include <tvm/target/target.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/transform.h>

#include <functional>
#include <unordered_set>
#include <utility>

#include "support/utils.h"
#include "tir/schedule/utils.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {
using namespace tir;

namespace software_pipeline {

/*!
 * \brief Create a block and infer the access region with the given body.
 *
 * The result is a opaque block that doesn't contain any block iter vars. In
 * case the body is a block realize without predicate, it is unnecessary to
 * create a new block, the block of the block realize will be returned.
 *
 * \param body The body of the block.
 * \param buffer_data_to_buffer The map from buffer data to buffer.
 * \return The result block.
 */
Block MakeBlock(const Stmt &body,
                const Map<Var, Buffer> &buffer_data_to_buffer) {
  if (const BlockRealizeNode *block_realize = body.as<BlockRealizeNode>()) {
    if (is_one(block_realize->predicate)) {
      // no need to create a new block
      return block_realize->block;
    }
  }
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ body);
  Array<Array<BufferRegion>> access =
      GetBlockReadWriteRegion(block, buffer_data_to_buffer);
  BlockNode *n = block.CopyOnWrite();
  n->reads = access[0];
  n->writes = access[1];
  return block;
}

/*! Structure that represents the provided annotation per block or loop. */
struct PipelineAnnotation {
  int stage;
  int order;
  bool async;
};

using PipelineInfo = std::unordered_map<Block, PipelineAnnotation,
                                        ObjectPtrHash, ObjectPtrEqual>;

struct BufferAccessInfo {
  int def = -1; // the defining stage of the buffer
  int use = -1; // the last using stage of the buffer
};

/*!
 * \brief Rewriter for the body of the software pipeline. This pass inserts
 * `floormod` to indices of the remapped buffer to select the version
 * corresponding to the pipeline stage.
 */
class PipelineBodyRewriter : public StmtExprMutator {
public:
  /*!
   * \brief Constructor of PipelineBodyRewriter.
   * \param buffer_data_to_buffer The map from buffer data to buffer.
   * \param buffer_remap The map from original buffer to the buffer with updated
   * shape for multi-versioning in the software pipeline. \param pipeline_loop
   * The original loop to be software pipelined. \param access_all_versions
   * Whether all versions the buffers in the software pipeline are accessed.
   * This will be used to update block access region. In the prologue and
   * epilogue of a two-stage software pipeline, only one version of these
   * buffers are accessed.
   */
  PipelineBodyRewriter(const Map<Var, Buffer> &buffer_data_to_buffer,
                       const Map<Buffer, Buffer> &buffer_remap,
                       For pipeline_loop, bool access_all_versions)
      : buffer_data_to_buffer_(buffer_data_to_buffer),
        buffer_remap_(buffer_remap), pipeline_loop_(std::move(pipeline_loop)),
        access_all_versions_(access_all_versions) {}

private:
  BufferRegion
  RewritePipelineBufferRegion(const BufferRegion &buffer_region) const {
    auto it = buffer_remap_.find(buffer_region->buffer);
    if (it != buffer_remap_.end()) {
      Region new_region = buffer_region->region;
      const Buffer &new_buffer = (*it).second;
      // For pipeline buffers, relax the access region of the first dimension to
      // full extent if access_all_versions == true
      Range accessed_version =
          access_all_versions_
              ? Range::FromMinExtent(0, new_buffer->shape[0])
              : Range::FromMinExtent(
                    floormod((pipeline_loop_->loop_var - pipeline_loop_->min),
                             new_buffer->shape[0]),
                    Integer(1));
      new_region.insert(new_region.begin(), accessed_version);
      return BufferRegion(new_buffer, new_region);
    }
    return buffer_region;
  }

  PrimExpr RewriteBufferAccess(const Call &call,
                               const std::vector<int> &arg_indices) {
    auto product = [](const Array<PrimExpr> &input) {
      return foldl(
          [](PrimExpr a, PrimExpr b, Span span) {
            return mul(std::move(a), std::move(b), std::move(span));
          },
          make_const(DataType::Int(32), 1), input);
    };
    Array<PrimExpr> new_args = call->args;
    for (int i : arg_indices) {
      const Buffer &buffer =
          buffer_data_to_buffer_.at(Downcast<Var>(call->args[i]));
      auto it = buffer_remap_.find(buffer);
      if (it != buffer_remap_.end()) {
        const Buffer &new_buffer = (*it).second;
        const PrimExpr &old_index = call->args[i + 1];
        PrimExpr offset;
        if (new_buffer->strides.empty()) {
          offset = product(buffer->shape);
        } else {
          offset = new_buffer->strides[0];
        }
        PrimExpr new_index =
            old_index +
            floormod(pipeline_loop_->loop_var, new_buffer->shape[0]) * offset;
        new_args.Set(i + 1, new_index);
      }
    }
    return Call(call->dtype, call->op, new_args, call->span);
  }

  Stmt VisitStmt_(const BlockNode *op) final {
    for (const Buffer &alloc_buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(alloc_buffer->data, alloc_buffer);
    }
    Block block = Downcast<Block>(StmtExprMutator::VisitStmt_(op));
    BlockNode *n = block.CopyOnWrite();
    n->reads.MutateByApply([this](const BufferRegion &buffer_region) {
      return RewritePipelineBufferRegion(buffer_region);
    });
    n->writes.MutateByApply([this](const BufferRegion &buffer_region) {
      return RewritePipelineBufferRegion(buffer_region);
    });
    for (const Buffer &alloc_buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.erase(alloc_buffer->data);
    }
    return block;
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    BufferStore store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    auto it = buffer_remap_.find(store->buffer);
    if (it == buffer_remap_.end()) {
      return store;
    }
    const Buffer &new_buffer = (*it).second;
    auto *n = store.CopyOnWrite();
    n->buffer = new_buffer;
    PrimExpr version = floormod(
        (pipeline_loop_->loop_var - pipeline_loop_->min), new_buffer->shape[0]);
    n->indices.insert(n->indices.begin(), version);
    return store;
  }

  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    BufferLoad load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    auto it = buffer_remap_.find(load->buffer);
    if (it == buffer_remap_.end()) {
      return load;
    }
    const Buffer &new_buffer = (*it).second;
    auto *n = load.CopyOnWrite();
    n->buffer = new_buffer;
    PrimExpr version = floormod(
        (pipeline_loop_->loop_var - pipeline_loop_->min), new_buffer->shape[0]);
    n->indices.insert(n->indices.begin(), version);
    return load;
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    Call call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
    if (call->op.same_as(builtin::tvm_access_ptr())) {
      return RewriteBufferAccess(call, {1});
    }
    return call;
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Buffer> buffer_remap_;
  For pipeline_loop_;
  bool access_all_versions_;
};

/*!
 * \brief Rewriter for the software pipeline that rewrite a loop into a
 * pipelined one.
 */
class PipelineRewriter : public StmtExprMutator {
public:
  PipelineRewriter(Map<Var, Buffer> buffer_data_to_buffer,
                   const Array<Buffer> &pipeline_allocs,
                   const For &pipeline_loop, const PipelineInfo &pipeline_info)
      : buffer_data_to_buffer_(std::move(buffer_data_to_buffer)),
        pipeline_allocs_(pipeline_allocs), pipeline_loop_(pipeline_loop),
        pipeline_info_(pipeline_info) {}

  Stmt BuildPipeline() {
    // Step 1: Analyze accesses to the buffers in the pipeline and compute the
    // number of versions need to maintain for each buffer.
    std::unordered_map<Buffer, BufferAccessInfo, ObjectPtrHash, ObjectPtrEqual>
        infos = GetBufferAccessInfo();
    for (const Buffer &buffer : pipeline_allocs_) {
      int num_versions = ComputeBufferVersions(buffer, infos.at(buffer));
      if (num_versions > 1) {
        buffer_remap_.Set(buffer, RewriteAllocBuffer(buffer, num_versions));
      }
    }
    ordered_stmts_.resize(pipeline_info_.size());
    for (const auto &[block, anno] : pipeline_info_) {
      ordered_stmts_.Set(anno.order, block);
    }

    for (const Block &block : ordered_stmts_) {
      int stage = pipeline_info_[block].stage;
      if (pipeline_info_[block].async) {
        auto &state = async_states[stage];
        state.producer_head = pipeline_loop_->min - 1;
        for (auto write_region : block->writes) {
          auto buffer = write_region->buffer;
          state.dst_buffers.insert(buffer.get());
          if (buffer_remap_.count(buffer))
            state.dst_buffers.insert(buffer_remap_[buffer].get());
        }
      }
    }
    std::unordered_set<int> consumed;
    for (const Block &block : ordered_stmts_) {
      int stage = pipeline_info_[block].stage;
      if (pipeline_info_[block].async) {
        auto &state = async_states[stage];
        if (state.commit_groups.empty() || consumed.count(stage)) {
          state.commit_groups.push_back({});
        }
        state.commit_groups.back().push_back(pipeline_info_[block].order);
        consumed.erase(stage);
        for (auto write_region : block->writes) {
          auto buffer = buffer_remap_.count(write_region->buffer)
                            ? buffer_remap_[write_region->buffer]
                            : write_region->buffer;
          state.buffer_to_commit_group_[buffer.get()] =
              state.commit_groups.size() - 1;
        }
      }

      for (auto read_region : block->reads) {
        for (const auto &[producer_stage_id, producer_state] : async_states) {
          if (producer_stage_id <= stage &&
              producer_state.writes(read_region->buffer)) {
            consumed.insert(producer_stage_id);
          }
        }
      }
    }

    // Step 2: Emit the pipeline prologue, body and epilogue.
    Stmt prologue = EmitImpl(pipeline_loop_->min,
                             pipeline_loop_->min + max_stage_, true, true);
    Stmt body =
        EmitImpl(pipeline_loop_->min + max_stage_,
                 pipeline_loop_->min + pipeline_loop_->extent, false, false);
    Stmt epilogue = EmitImpl(
        pipeline_loop_->min + pipeline_loop_->extent,
        pipeline_loop_->min + pipeline_loop_->extent + max_stage_, true, true);

    SeqStmt stmt = SeqStmt({prologue, body, epilogue});

    // Step 3: Make a new block that contains new buffer allocations after
    // pipeline rewriting.
    Array<Buffer> alloc_buffers;
    for (const auto &alloc : pipeline_allocs_) {
      alloc_buffers.push_back(buffer_remap_.Get(alloc).value_or(alloc));
      buffer_data_to_buffer_.erase(alloc->data);
    }
    Block block = MakeBlock(stmt, buffer_data_to_buffer_);
    block.CopyOnWrite()->alloc_buffers = std::move(alloc_buffers);
    return BlockRealize({}, Bool(true), block);
  }

private:
  /*!
   * \brief Analyze accesses to the buffers in the software pipeline.
   *
   * This method check the 'define' and 'use' stage of the buffers in the
   * software pipeline, which can be used to compute the number of versions
   * needed to maintain after rewriting.
   */
  std::unordered_map<Buffer, BufferAccessInfo, ObjectPtrHash, ObjectPtrEqual>
  GetBufferAccessInfo() {
    std::unordered_map<Buffer, BufferAccessInfo, ObjectPtrHash, ObjectPtrEqual>
        infos;
    for (const auto &pair : pipeline_info_) {
      const Block &block = pair.first;
      int stage = pair.second.stage;
      max_stage_ = std::max(max_stage_, stage);

      for (const BufferRegion &write : block->writes) {
        if (!infos.count(write->buffer)) {
          infos.emplace(write->buffer, BufferAccessInfo{});
        }
        auto &info = infos.at(write->buffer);
        if (info.def == -1) {
          info.def = stage;
        } else {
          info.def = std::min(info.def, stage);
        }
      }

      for (const BufferRegion &read : block->reads) {
        if (!infos.count(read->buffer)) {
          infos.emplace(read->buffer, BufferAccessInfo{});
        }
        auto &info = infos.at(read->buffer);
        info.use = std::max(info.use, stage);
      }
    }
    return infos;
  }

  /*!
   * \brief Check whether two regions have intersections.
   * \param region1 The first region.
   * \param region2 The second region.
   * \return Whether region1 and region2 have intersections.
   */
  bool MayConflict(const Region &region1, const Region &region2) {
    ICHECK(region1.size() == region2.size());
    for (size_t i = 0; i < region1.size(); i++) {
      Range dim1 = region1[i];
      Range dim2 = region2[i];
      auto int_set1 = arith::IntSet::FromRange(dim1);
      auto int_set2 = arith::IntSet::FromRange(dim2);
      if (arith::Intersect({int_set1, int_set2}).IsNothing()) {
        return false;
      }
    }
    return true;
  }

  /*!
   * \brief Compute the number of versions need to maintain for buffer accessed
   * in the software pipeline.
   *
   * This method applies liveness analysis to the target buffer to compute the
   * number of versions need to maintain during the software pipeline.
   * Annotation `attr::double_buffer_scope` is handled here which provides a way
   * to override the result of the analysis. Additional double buffering in the
   * software pipeline can be useful to eliminate synchronizations in GPU
   * devices.
   *
   * \param buffer The target buffer
   * \param buffer_info The access information of the target buffer.
   * \return The number of versions required for the target buffer.
   */
  int ComputeBufferVersions(const Buffer &buffer,
                            const BufferAccessInfo &buffer_info) {
    if (buffer_info.def == -1) {
      // Keep the original number of versions as buffers defined outside the
      // software pipeline should not be mutated.
      return 1;
    }

    // `use - def + 1` is a upper bound of the needed versions
    // We optimize a few case where the number of versions can be smaller than
    // the upper bound
    int num_versions = buffer_info.use - buffer_info.def + 1;
    if (num_versions >= 2) {
      // A special case when `use - def + 1 == 2`. Double buffering is only
      // needed in this case when these exists a reader block_i and a writer
      // block_j such that order(block_i) < order(block_j) and stage(block_i) <
      // stage(block_j) and the access regions of block_i and block_j overlap.
      bool need_multi_version = false;
      for (const auto &pair1 : pipeline_info_) {
        const Block &writer_block = pair1.first;
        const auto &writer_info = pair1.second;

        auto it1 = std::find_if(writer_block->writes.begin(),
                                writer_block->writes.end(),
                                [&](const BufferRegion &buffer_region) {
                                  return buffer_region->buffer.same_as(buffer);
                                });
        if (it1 == writer_block->writes.end()) {
          continue;
        }

        for (const auto &pair2 : pipeline_info_) {
          const Block &reader_block = pair2.first;
          const auto &reader_info = pair2.second;
          auto it2 = std::find_if(
              reader_block->reads.begin(), reader_block->reads.end(),
              [&](const BufferRegion &buffer_region) {
                return buffer_region->buffer.same_as(buffer);
              });
          if (it2 == reader_block->reads.end()) {
            continue;
          }
          if (writer_info.order < reader_info.order &&
              writer_info.stage < reader_info.stage &&
              MayConflict((*it1)->region, (*it2)->region)) {
            need_multi_version = true;
            break;
          }
        }
      }
      if (!need_multi_version) {
        num_versions--;
      }
    }
    return num_versions;
  }

  /*!
   * \brief Rewrite buffer allocation to keep multiple versions of original
   * buffer for pipelined accesses. \param buffer The buffer to be resized.
   * \param num_versions The number of versions to keep.
   * \return The resized buffer.
   */
  Buffer RewriteAllocBuffer(const Buffer &buffer, int num_versions) {
    ObjectPtr<BufferNode> new_buffer = make_object<BufferNode>(*(buffer.get()));
    new_buffer->shape.insert(new_buffer->shape.begin(), PrimExpr(num_versions));
    if (!new_buffer->strides.empty()) {
      ICHECK(new_buffer->strides.size() + 1 == new_buffer->shape.size());
      PrimExpr stride_0 = new_buffer->strides[0] * new_buffer->shape[1];
      new_buffer->strides.insert(new_buffer->strides.begin(), stride_0);
    }
    return Buffer(new_buffer);
  }

  // Per-stage states that need to be tracked across pipeline prologue, body,
  // and epilogue.
  struct AsyncStateGlobal {
    // Buffers that this stage asynchronously writes.
    std::unordered_set<const BufferNode *> dst_buffers;
    // An imaginary index that the latest async operation associated with this
    // stage has written into. Only valid if all associated predicates are true,
    // so that we can count the number of async invocations exactly. When it is
    // valid, it is the "sum of extents of loops that have been executed" - 1,
    // e.g. for epilogue it is prologue extent + body extent - 1. This is only
    // needed to compute wait count for epilogue without async producers.
    PrimExpr producer_head;
    std::vector<std::vector<int>> commit_groups;
    std::unordered_map<const BufferNode *, int> buffer_to_commit_group_;
    bool writes(const Buffer &buf) const {
      return dst_buffers.count(buf.get()) > 0;
    }
  };

  // Per-stage states that are local to each of pipeline prologue, body, and
  // epilogue.
  struct AsyncStateLocal {
    struct PendingWait {
      // The index into a list of blocks, where async_wait_queue should be
      // attached at the beginning.
      int insert_before;
      // in_flight_count would be a more precise name, but the implementation
      // uses wait_count for brevity.
      PrimExpr wait_count{nullptr};

      bool valid() const { return wait_count.defined(); }
    };

    std::vector<PendingWait> pending_waits;

    // A symbolic expression representing the index the latest async operation
    // associated with this stage has written into, at the "current" iteration.
    Optional<PrimExpr> producer_head;
  };

  /*! Structure holding intermediate information for pipeline loop rewriting. */
  struct RewrittenBlockInfo {
    int stage;
    int order;
    PrimExpr predicate;
    Block block;
    PrimExpr access_index;
    bool is_async;
  };

  void PopulateWaitCounts(const std::vector<RewrittenBlockInfo> &new_blocks,
                          std::map<int, AsyncStateLocal> *async_states_local) {
    for (size_t i = 0; i < new_blocks.size(); ++i) {
      int producer_stage_idx = -1;
      for (auto read_region : new_blocks[i].block->reads) {
        for (const auto &[stage, state] : async_states) {
          if (stage <= new_blocks[i].stage &&
              state.writes(read_region->buffer)) {
            // Found an earlier stage where read_region->buffer was
            // asynchronously written
            ICHECK(producer_stage_idx == -1 || producer_stage_idx == stage)
                << "A dependency on multiple async stages is not supported";
            producer_stage_idx = stage;
          }
        }
      }
      if (producer_stage_idx == -1)
        continue;
      const auto &state = async_states[producer_stage_idx];
      auto &dep_local_state = (*async_states_local)[producer_stage_idx];
      PrimExpr in_flight_cnt = 0;
      for (const auto &group : state.commit_groups) {
        PrimExpr consumer_head = new_blocks[i].access_index;
        PrimExpr producer_head;
        if (dep_local_state.producer_head.defined()) {
          producer_head = dep_local_state.producer_head.value();
          // if the group is after the wait point, minus by 1
          if (group.front() > new_blocks[i].order)
            producer_head -= 1;
        } else {
          producer_head = state.producer_head;
        }
        in_flight_cnt += producer_head - consumer_head;
      }

      // We can relax the in-flight-count by the number of independent commit.
      std::unordered_set<int> dependent_groups;
      for (const auto &read_region : new_blocks[i].block->reads) {
        if (state.buffer_to_commit_group_.count(read_region->buffer.get()))
          dependent_groups.insert(
              state.buffer_to_commit_group_.at(read_region->buffer.get()));
      }
      for (int i = int(state.commit_groups.size()) - 1; i >= 0; i--) {
        if (dependent_groups.count(i) == 0)
          in_flight_cnt += 1;
        else
          break; // stop relaxing
      }
      in_flight_cnt = analyzer_.Simplify(in_flight_cnt);
      dep_local_state.pending_waits.push_back(
          {static_cast<int>(i), in_flight_cnt});
    }
  }

  // Given pipelined blocks and async-related information, generate final loop
  // statements with async scopes (if any).
  Array<Stmt> CompletePipelineLoopStatements(
      const std::vector<RewrittenBlockInfo> &blocks,
      const std::map<int, AsyncStateLocal> &async_states_local) const {
    std::vector<RewrittenBlockInfo> new_blocks = blocks;
    for (const auto &[stage_id, state] : async_states_local) {
      for (const auto &pw : state.pending_waits) {
        auto &block = new_blocks[pw.insert_before].block;
        BlockNode *n = block.CopyOnWrite();
        auto zero = make_zero(DataType::Int(32));
        n->body = AttrStmt(zero, tir::attr::async_wait_queue_scope, stage_id,
                           AttrStmt(zero, tir::attr::async_wait_inflight_count,
                                    pw.wait_count, n->body));
      }
    }

    // mark the last async stmt as commit
    std::unordered_set<int> commit_group_indices;
    for (const auto &[stage_id, state] : async_states) {
      for (size_t i = 0; i < state.commit_groups.size(); ++i) {
        commit_group_indices.insert(state.commit_groups[i].back());
      }
    }

    Array<Stmt> stmts;

    for (size_t i = 0; i < new_blocks.size(); i++) {
      Block block = new_blocks[i].block;
      if (commit_group_indices.count(new_blocks[i].order)) {
        auto commit_queue_scope = AttrStmt(make_zero(DataType::Int(32)),
                                           tir::attr::async_commit_queue_scope,
                                           new_blocks[i].stage, block->body);
        block = MakeBlock(commit_queue_scope, buffer_data_to_buffer_);
      }
      stmts.push_back(BlockRealize({}, new_blocks[i].predicate, block));
    }

    return stmts;
  }

  /*!
   * \brief Emit the pipeline loop in the given range.
   * \param start The start of the range
   * \param end The end of the range
   * \param unroll_loop Whether the loop should be unrolled.
   * \return The result loop.
   */
  Stmt EmitImpl(const PrimExpr &start, const PrimExpr &end, bool unroll_loop,
                bool need_bound_check) {
    PrimExpr new_loop_var;
    PrimExpr extent = end - start;
    auto make_nop = []() {
      return BlockRealize({}, Bool(true), MakeBlock(Evaluate(0), {}));
    };

    bool is_unit_loop = analyzer_.CanProveEqual(extent, 1);
    if (is_unit_loop) {
      new_loop_var = start; // use constants as the loop var for unit loops
    } else {
      new_loop_var = pipeline_loop_->loop_var.copy_with_suffix("");
      analyzer_.Bind(Downcast<Var>(new_loop_var), Range(start, end));
    }

    std::vector<RewrittenBlockInfo> new_blocks;

    // Async related
    std::map<int, AsyncStateLocal> async_states_local;

    for (const Block &block : ordered_stmts_) {
      int stage = pipeline_info_.at(block).stage;
      int order = pipeline_info_.at(block).order;
      PrimExpr inbound = Bool(true);
      PrimExpr skewed_loop_var = new_loop_var - stage;
      if (need_bound_check)
        inbound =
            analyzer_.Simplify(pipeline_loop_->min <= skewed_loop_var) &&
            (skewed_loop_var < pipeline_loop_->min + pipeline_loop_->extent);
      if (analyzer_.CanProve(!inbound)) {
        continue;
      }
      Block new_block = Downcast<Block>(
          PipelineBodyRewriter(buffer_data_to_buffer_, buffer_remap_,
                               pipeline_loop_, max_stage_ != 1)(block));

      PrimExpr delta = start - pipeline_loop_->min;
      // This variable corresponds to
      // - "producer_head" if this stage is an async producer
      // - "consumer_head" if this stage reads from asynchronously written
      // buffers.
      PrimExpr normalized_access_index =
          is_unit_loop ? skewed_loop_var : skewed_loop_var + delta;

      // Adjust the block predicate and the body according to the final loop
      // bound
      //  [pipeline_loop_->min, extent).
      if (!is_unit_loop) {
        Var loop_iter = Downcast<Var>(new_loop_var);
        inbound = Substitute(inbound, {{loop_iter, loop_iter + delta}});
      }
      new_block = Downcast<Block>(Substitute(
          new_block, {{pipeline_loop_->loop_var, normalized_access_index}}));

      if (pipeline_info_[block].async) {
        auto &local_state = async_states_local[stage];
        local_state.producer_head = normalized_access_index;
        BlockNode *n = new_block.CopyOnWrite();
        n->body = AttrStmt(make_zero(DataType::Int(32)), tir::attr::async_scope,
                           1, n->body);
      }

      new_blocks.push_back({stage, order, inbound, new_block,
                            normalized_access_index,
                            pipeline_info_[block].async});
    }

    PopulateWaitCounts(new_blocks, &async_states_local);

    auto stmts = CompletePipelineLoopStatements(new_blocks, async_states_local);

    Stmt new_loop{nullptr};

    if (stmts.empty()) {
      return make_nop();
    }

    if (stmts.size() == 1) {
      new_loop = stmts[0];
    } else {
      new_loop = SeqStmt(stmts);
    }

    if (!is_unit_loop) {
      Map<String, Any> preserved_annotations;
      for (const auto &kv : pipeline_loop_->annotations) {
        const String &key = kv.first;
        if (kv.first != tir::attr::software_pipeline_stage &&
            kv.first != tir::attr::software_pipeline_order &&
            kv.first != tir::attr::software_pipeline_async_stages) {
          preserved_annotations.Set(key, kv.second);
        }
      }
      new_loop = For(Downcast<Var>(new_loop_var), pipeline_loop_->min, extent,
                     unroll_loop ? ForKind::kUnrolled : pipeline_loop_->kind,
                     std::move(new_loop), std::nullopt, preserved_annotations);
    }
    // Update producer heads in the global async states.
    for (const auto &[stage_id, state] : async_states_local) {
      async_states[stage_id].producer_head += extent;
    }

    return BlockRealize({}, Bool(true),
                        MakeBlock(new_loop, buffer_data_to_buffer_));
  }

  arith::Analyzer analyzer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Array<Buffer> pipeline_allocs_;
  For pipeline_loop_;
  PipelineInfo pipeline_info_;
  int max_stage_ = -1;
  Map<Buffer, Buffer> buffer_remap_;
  Array<Block> ordered_stmts_;
  std::map<int, AsyncStateGlobal> async_states;
};

/*!
 * \brief Build the dependency graph among a array of blocks.
 * \param[in] blocks The array of blocks.
 * \param[out] dep_src2dst Optional, a map to store dependency edges from the
 * source to the destination. \param[out] dep_dst2src Optional, a map to store
 * dependency edges from the destination to the source.
 */
void BuildDependencyGraph(const Array<Block> &blocks,
                          std::unordered_map<Block, Array<Block>, ObjectPtrHash,
                                             ObjectPtrEqual> *dep_src2dst,
                          std::unordered_map<Block, Array<Block>, ObjectPtrHash,
                                             ObjectPtrEqual> *dep_dst2src) {
  std::unordered_map<Var, Array<Block>, ObjectPtrHash, ObjectPtrEqual>
      buffer_writers;

  for (const Block &block : blocks) {
    for (const BufferRegion &read : block->reads) {
      auto it = buffer_writers.find(read->buffer->data);
      if (it != buffer_writers.end()) {
        for (const Block &writer : it->second) {
          if (dep_src2dst != nullptr) {
            (*dep_src2dst)[writer].push_back(block);
          }
          if (dep_dst2src != nullptr) {
            (*dep_dst2src)[block].push_back(writer);
          }
        }
      }
    }
    for (const BufferRegion &write : block->writes) {
      buffer_writers[write->buffer->data].push_back(block);
    }
  }
}

class PipelineInjector : private StmtExprMutator {
public:
  static Stmt Inject(const PrimFunc &func) {
    auto global_symbol = func->GetAttr<String>(tvm::attr::kGlobalSymbol);
    PipelineInjector injector(global_symbol);
    for (const auto &kv : func->buffer_map) {
      const Buffer &buffer = kv.second;
      injector.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    return injector(func->body);
  }

private:
  explicit PipelineInjector(Optional<String> global_symbol)
      : global_symbol_(std::move(global_symbol)) {}

  /*!
   * \brief Check the pipeline satisfies the following conditions:
   * 1. No conflicting order: The order of each statement should be unique.
   * 2. Reordering of statements doesn't break buffer access dependencies.
   * Specifically, for dependency (e.g. read-after-write) from statement A to
   * statement B, it requires: case 1: stage(A) < stage(B) case 2: stage(A) ==
   * stage(B) and order(A) < order(B)
   */
  void ValidatePipelineBody(const PipelineInfo &pipeline_info,
                            const Array<Block> &original_order) {
    std::unordered_set<int> used_orders;
    std::unordered_map<int, int> stage_max_order;
    std::unordered_map<int, const Block *> order_to_block;
    std::unordered_map<const Block *, int> block_to_stage;
    for (const Block &block : original_order) {
      const auto &stmt_info = pipeline_info.at(block);
      int order = stmt_info.order;
      CHECK(!used_orders.count(order))
          << "ValueError: Two statements in the software pipeline cannot have "
             "the same order";
      used_orders.insert(order);
    }

    std::unordered_map<Block, Array<Block>, ObjectPtrHash, ObjectPtrEqual>
        dep_src2dst;
    BuildDependencyGraph(original_order, &dep_src2dst, nullptr);

    for (const auto &pair : dep_src2dst) {
      const Block &src = pair.first;
      const auto &src_info = pipeline_info.at(src);
      const Array<Block> &dsts = pair.second;
      for (const Block &dst : dsts) {
        const auto &dst_info = pipeline_info.at(dst);
        CHECK_LE(src_info.stage, dst_info.stage)
            << "ValueError: statement " << dst << " in stage " << dst_info.stage
            << " cannot depends on statement " << src << " in a later stage "
            << src_info.stage;
        if (src_info.stage == dst_info.stage) {
          CHECK_LT(src_info.order, dst_info.order)
              << "ValueError: two statements with buffer "
                 "access dependency in the same stage of the "
                 "software pipeline cannot be reordered";
        }
      }
    }
  }

  Stmt VisitStmt_(const ForNode *op) final {
    // Step 1: Recursively rewrite the children first.
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (!HasPipelineAnnotation(op)) {
      return for_node;
    }
    // Step 2: Find the body and buffer allocations of the pipeline. The body
    // can be direct child of the for-loop. If the for-loop has BlockRealize as
    // its child, the pipeline body will be the child of the block.
    Stmt pipeline_body_root{nullptr};
    bool pipeline_body_from_block = false;
    Array<Buffer> pipeline_allocs;
    if (const auto *realize = for_node->body.as<BlockRealizeNode>()) {
      const auto &block = realize->block;
      for (const auto &buffer : block->alloc_buffers) {
        ICHECK(buffer->IsInstance<BufferNode>());
        buffer_data_to_buffer_.Set(buffer->data, buffer);
      }
      pipeline_body_root = block->body;
      pipeline_allocs = block->alloc_buffers;
      pipeline_body_from_block = true;
    } else {
      pipeline_body_root = for_node->body;
    }

    const SeqStmtNode *pipeline_body_seq = nullptr;
    std::vector<std::function<Stmt(Stmt)>> rewrap_fns;
    auto append_attr_wrapper = [&rewrap_fns](const AttrStmtNode *attr) {
      ObjectRef node = attr->node;
      String attr_key = attr->attr_key;
      PrimExpr value = attr->value;
      Span span = attr->span;
      rewrap_fns.emplace_back(
          [node = std::move(node), attr_key = std::move(attr_key),
           value = std::move(value), span](Stmt body) -> Stmt {
            return AttrStmt(node, attr_key, value, body, span);
          });
    };
    {
      Stmt current = pipeline_body_root;
      while (true) {
        if (const auto *seq_stmt = current.as<SeqStmtNode>()) {
          pipeline_body_seq = seq_stmt;
          break;
        }
        if (const auto *if_then_else = current.as<IfThenElseNode>()) {
          ICHECK(!if_then_else->else_case.defined())
              << "InjectSoftwarePipeline: Can't handle the body of the loop "
                 "because the IfThenElse node has an else branch";
          PrimExpr condition = if_then_else->condition;
          Span span = if_then_else->span;
          rewrap_fns.emplace_back(
              [condition = std::move(condition), span](Stmt body) -> Stmt {
                return IfThenElse(condition, body, Stmt(), span);
              });
          current = if_then_else->then_case;
          continue;
        }
        if (const auto *let_stmt = current.as<LetStmtNode>()) {
          Var var = let_stmt->var;
          PrimExpr value = let_stmt->value;
          Span span = let_stmt->span;
          rewrap_fns.emplace_back([var = std::move(var),
                                   value = std::move(value),
                                   span](Stmt body) -> Stmt {
            return LetStmt(var, value, body, span);
          });
          current = let_stmt->body;
          continue;
        }
        if (const auto *attr = current.as<AttrStmtNode>()) {
          append_attr_wrapper(attr);
          current = attr->body;
          continue;
        }
        LOG(FATAL) << "ValueError: The body of the software pipeline should be "
                   << "SeqStmt, got " << current->GetTypeKey();
      }
    }
    ICHECK(pipeline_body_seq != nullptr);

    // Step 3: Blockize the components of the pipeline. Each child of the
    // pipelined loop will be converted into a block.
    PipelineInfo pipeline_info;
    Array<Block> original_order; // pipeline body blocks in the original order

    auto f_add_child = [&](const Stmt &child) {
      original_order.push_back(MakeBlock(child, buffer_data_to_buffer_));
    };
    for (size_t i = 0; i < pipeline_body_seq->seq.size(); i++) {
      const Stmt &child = pipeline_body_seq->seq[i];
      const auto *nested_block_realize = child.as<BlockRealizeNode>();
      if (nested_block_realize && is_one(nested_block_realize->predicate) &&
          nested_block_realize->block->body->IsInstance<SeqStmtNode>()) {
        const Block &nested_pipeline_block = nested_block_realize->block;
        ICHECK(nested_pipeline_block->match_buffers
                   .empty()); // match_buffer should have been lowered
        for (const auto &buffer : nested_pipeline_block->alloc_buffers) {
          pipeline_allocs.push_back(buffer);
          buffer_data_to_buffer_.Set(buffer->data, buffer);
        }
      }
      f_add_child(child);
    }

    auto pipeline_stages = Downcast<Array<Integer>>(
        op->annotations.at(tir::attr::software_pipeline_stage));
    auto pipeline_orders = Downcast<Array<Integer>>(
        op->annotations.at(tir::attr::software_pipeline_order));
    CHECK_EQ(pipeline_stages.size(), original_order.size())
        << "PrimFunc " << global_symbol_ << " has original order "
        << original_order.Map(
               [](const auto &block) { return block->name_hint; })
        << ", but pipeline annotation is " << pipeline_stages
        << " with different size";
    CHECK_EQ(pipeline_orders.size(), original_order.size())
        << "PrimFunc " << global_symbol_ << " has original order "
        << original_order.Map(
               [](const auto &block) { return block->name_hint; })
        << ", but pipeline annotation is " << pipeline_orders
        << " with different size";

    std::unordered_set<int> pipeline_async_stages;
    if (auto annot =
            op->annotations.Get(tir::attr::software_pipeline_async_stages)) {
      for (auto s : Downcast<Array<Integer>>(annot.value())) {
        pipeline_async_stages.insert(s->value);
      }
    }

    for (size_t i = 0; i < pipeline_stages.size(); i++) {
      int stage = static_cast<int>(pipeline_stages[i]->value);
      bool is_async =
          pipeline_async_stages.find(stage) != pipeline_async_stages.end();
      PipelineAnnotation stage_order{
          stage,
          /*order=*/static_cast<int>(pipeline_orders[i]->value), is_async};
      pipeline_info.emplace(original_order[i], stage_order);
    }

    ValidatePipelineBody(pipeline_info, original_order);

    // Step 4: Rewrite the pipeline body.
    Stmt pipeline = PipelineRewriter(buffer_data_to_buffer_, pipeline_allocs,
                                     GetRef<For>(op), pipeline_info)
                        .BuildPipeline();
    auto apply_wrappers = [&](Stmt stmt) {
      for (auto it = rewrap_fns.rbegin(); it != rewrap_fns.rend(); ++it) {
        stmt = (*it)(stmt);
      }
      return stmt;
    };
    if (!rewrap_fns.empty()) {
      if (pipeline_body_from_block) {
        BlockRealize pipeline_realize = Downcast<BlockRealize>(pipeline);
        Block pipeline_block = pipeline_realize->block;
        {
          BlockNode *block_node = pipeline_block.CopyOnWrite();
          block_node->body = apply_wrappers(block_node->body);
        }
        pipeline = BlockRealize(pipeline_realize->iter_values,
                                pipeline_realize->predicate, pipeline_block,
                                pipeline_realize->span);
      } else {
        pipeline = apply_wrappers(pipeline);
      }
    }

    if (const auto *realize = op->body.as<BlockRealizeNode>()) {
      const auto &block = realize->block;
      for (const auto &buffer : block->alloc_buffers) {
        buffer_data_to_buffer_.erase(buffer->data);
      }
    }
    return pipeline;
  }

  Stmt VisitStmt_(const BlockNode *op) final {
    for (const auto &buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }

    Block block = Downcast<Block>(StmtExprMutator::VisitStmt_(op));

    Array<Array<BufferRegion>> access =
        GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    BlockNode *n = block.CopyOnWrite();
    n->reads = access[0];
    n->writes = access[1];

    for (const auto &buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.erase(buffer->data);
    }
    return block;
  }

  bool HasPipelineAnnotation(const ForNode *op) const {
    auto it1 = op->annotations.find(tir::attr::software_pipeline_stage);
    auto it2 = op->annotations.find(tir::attr::software_pipeline_order);
    bool has_stage = it1 != op->annotations.end();
    bool has_order = it2 != op->annotations.end();
    if (has_stage && has_order) {
      return true;
    }
    if (has_stage) {
      LOG(FATAL)
          << "ValueError: Stage of the software pipeline is not defined.";
    }
    if (has_order) {
      LOG(FATAL)
          << "ValueError: Order of the software pipeline is not defined.";
    }
    return false;
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  Optional<String> global_symbol_;
};
} // namespace software_pipeline

/*!
 * \brief Transform annotated loops into pipelined one that parallelize
 * producers and consumers. \return The IR transform pass.
 */
tir::transform::Pass InjectSoftwarePipeline() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
    auto *fptr = f.CopyOnWrite();
    fptr->body = software_pipeline::PipelineInjector::Inject(f);
    fptr->body = ConvertSSA(std::move(fptr->body));
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.InjectSoftwarePipeline", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.InjectSoftwarePipeline",
                        InjectSoftwarePipeline);
});

} // namespace tl
} // namespace tvm