/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /*! * \file inject_software_pipeline.cc * \brief Transform annotated loops into pipelined one that parallelize * producers and consumers */ #include #include #include #include #include #include #include "support/utils.h" #include "tir/schedule/utils.h" #include "tir/transforms/ir_utils.h" namespace tvm { namespace tl { using namespace tir; namespace software_pipeline { /*! * \brief Create a block and infer the access region with the given body. * * The result is a opaque block that doesn't contain any block iter vars. In * case the body is a block realize without predicate, it is unnecessary to * create a new block, the block of the block realize will be returned. * * \param body The body of the block. * \param buffer_data_to_buffer The map from buffer data to buffer. * \return The result block. */ Block MakeBlock(const Stmt &body, const Map &buffer_data_to_buffer) { if (const BlockRealizeNode *block_realize = body.as()) { if (is_one(block_realize->predicate)) { // no need to create a new block return block_realize->block; } } Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"", /*body*/ body); Array> access = GetBlockReadWriteRegion(block, buffer_data_to_buffer); BlockNode *n = block.CopyOnWrite(); n->reads = access[0]; n->writes = access[1]; return block; } /*! Structure that represents the provided annotation per block or loop. */ struct PipelineAnnotation { int stage; int order; bool async; }; using PipelineInfo = std::unordered_map; struct BufferAccessInfo { int def = -1; // the defining stage of the buffer int use = -1; // the last using stage of the buffer }; /*! * \brief Rewriter for the body of the software pipeline. This pass inserts * `floormod` to indices of the remapped buffer to select the version * corresponding to the pipeline stage. */ class PipelineBodyRewriter : public StmtExprMutator { public: /*! * \brief Constructor of PipelineBodyRewriter. * \param buffer_data_to_buffer The map from buffer data to buffer. * \param buffer_remap The map from original buffer to the buffer with updated * shape for multi-versioning in the software pipeline. \param pipeline_loop * The original loop to be software pipelined. \param access_all_versions * Whether all versions the buffers in the software pipeline are accessed. * This will be used to update block access region. In the prologue and * epilogue of a two-stage software pipeline, only one version of these * buffers are accessed. */ PipelineBodyRewriter(const Map &buffer_data_to_buffer, const Map &buffer_remap, For pipeline_loop, bool access_all_versions) : buffer_data_to_buffer_(buffer_data_to_buffer), buffer_remap_(buffer_remap), pipeline_loop_(std::move(pipeline_loop)), access_all_versions_(access_all_versions) {} private: BufferRegion RewritePipelineBufferRegion(const BufferRegion &buffer_region) const { auto it = buffer_remap_.find(buffer_region->buffer); if (it != buffer_remap_.end()) { Region new_region = buffer_region->region; const Buffer &new_buffer = (*it).second; // For pipeline buffers, relax the access region of the first dimension to // full extent if access_all_versions == true Range accessed_version = access_all_versions_ ? Range::FromMinExtent(0, new_buffer->shape[0]) : Range::FromMinExtent( floormod((pipeline_loop_->loop_var - pipeline_loop_->min), new_buffer->shape[0]), Integer(1)); new_region.insert(new_region.begin(), accessed_version); return BufferRegion(new_buffer, new_region); } return buffer_region; } PrimExpr RewriteBufferAccess(const Call &call, const std::vector &arg_indices) { auto product = [](const Array &input) { return foldl( [](PrimExpr a, PrimExpr b, Span span) { return mul(std::move(a), std::move(b), std::move(span)); }, make_const(DataType::Int(32), 1), input); }; Array new_args = call->args; for (int i : arg_indices) { const Buffer &buffer = buffer_data_to_buffer_.at(Downcast(call->args[i])); auto it = buffer_remap_.find(buffer); if (it != buffer_remap_.end()) { const Buffer &new_buffer = (*it).second; const PrimExpr &old_index = call->args[i + 1]; PrimExpr offset; if (new_buffer->strides.empty()) { offset = product(buffer->shape); } else { offset = new_buffer->strides[0]; } PrimExpr new_index = old_index + floormod(pipeline_loop_->loop_var, new_buffer->shape[0]) * offset; new_args.Set(i + 1, new_index); } } return Call(call->dtype, call->op, new_args, call->span); } Stmt VisitStmt_(const BlockNode *op) final { for (const Buffer &alloc_buffer : op->alloc_buffers) { buffer_data_to_buffer_.Set(alloc_buffer->data, alloc_buffer); } Block block = Downcast(StmtExprMutator::VisitStmt_(op)); BlockNode *n = block.CopyOnWrite(); n->reads.MutateByApply([this](const BufferRegion &buffer_region) { return RewritePipelineBufferRegion(buffer_region); }); n->writes.MutateByApply([this](const BufferRegion &buffer_region) { return RewritePipelineBufferRegion(buffer_region); }); for (const Buffer &alloc_buffer : op->alloc_buffers) { buffer_data_to_buffer_.erase(alloc_buffer->data); } return block; } Stmt VisitStmt_(const BufferStoreNode *op) final { BufferStore store = Downcast(StmtExprMutator::VisitStmt_(op)); auto it = buffer_remap_.find(store->buffer); if (it == buffer_remap_.end()) { return store; } const Buffer &new_buffer = (*it).second; auto *n = store.CopyOnWrite(); n->buffer = new_buffer; PrimExpr version = floormod( (pipeline_loop_->loop_var - pipeline_loop_->min), new_buffer->shape[0]); n->indices.insert(n->indices.begin(), version); return store; } PrimExpr VisitExpr_(const BufferLoadNode *op) final { BufferLoad load = Downcast(StmtExprMutator::VisitExpr_(op)); auto it = buffer_remap_.find(load->buffer); if (it == buffer_remap_.end()) { return load; } const Buffer &new_buffer = (*it).second; auto *n = load.CopyOnWrite(); n->buffer = new_buffer; PrimExpr version = floormod( (pipeline_loop_->loop_var - pipeline_loop_->min), new_buffer->shape[0]); n->indices.insert(n->indices.begin(), version); return load; } PrimExpr VisitExpr_(const CallNode *op) final { Call call = Downcast(StmtExprMutator::VisitExpr_(op)); if (call->op.same_as(builtin::tvm_access_ptr())) { return RewriteBufferAccess(call, {1}); } return call; } Map buffer_data_to_buffer_; Map buffer_remap_; For pipeline_loop_; bool access_all_versions_; }; /*! * \brief Rewriter for the software pipeline that rewrite a loop into a * pipelined one. */ class PipelineRewriter : public StmtExprMutator { public: PipelineRewriter(Map buffer_data_to_buffer, const Array &pipeline_allocs, const For &pipeline_loop, const PipelineInfo &pipeline_info) : buffer_data_to_buffer_(std::move(buffer_data_to_buffer)), pipeline_allocs_(pipeline_allocs), pipeline_loop_(pipeline_loop), pipeline_info_(pipeline_info) {} Stmt BuildPipeline() { // Step 1: Analyze accesses to the buffers in the pipeline and compute the // number of versions need to maintain for each buffer. std::unordered_map infos = GetBufferAccessInfo(); for (const Buffer &buffer : pipeline_allocs_) { int num_versions = ComputeBufferVersions(buffer, infos.at(buffer)); if (num_versions > 1) { buffer_remap_.Set(buffer, RewriteAllocBuffer(buffer, num_versions)); } } ordered_stmts_.resize(pipeline_info_.size()); for (const auto &[block, anno] : pipeline_info_) { ordered_stmts_.Set(anno.order, block); } for (const Block &block : ordered_stmts_) { int stage = pipeline_info_[block].stage; if (pipeline_info_[block].async) { auto &state = async_states[stage]; state.producer_head = pipeline_loop_->min - 1; for (auto write_region : block->writes) { auto buffer = write_region->buffer; state.dst_buffers.insert(buffer.get()); if (buffer_remap_.count(buffer)) state.dst_buffers.insert(buffer_remap_[buffer].get()); } } } std::unordered_set consumed; for (const Block &block : ordered_stmts_) { int stage = pipeline_info_[block].stage; if (pipeline_info_[block].async) { auto &state = async_states[stage]; if (state.commit_groups.empty() || consumed.count(stage)) { state.commit_groups.push_back({}); } state.commit_groups.back().push_back(pipeline_info_[block].order); consumed.erase(stage); for (auto write_region : block->writes) { auto buffer = buffer_remap_.count(write_region->buffer) ? buffer_remap_[write_region->buffer] : write_region->buffer; state.buffer_to_commit_group_[buffer.get()] = state.commit_groups.size() - 1; } } for (auto read_region : block->reads) { for (const auto &[producer_stage_id, producer_state] : async_states) { if (producer_stage_id <= stage && producer_state.writes(read_region->buffer)) { consumed.insert(producer_stage_id); } } } } // Step 2: Emit the pipeline prologue, body and epilogue. Stmt prologue = EmitImpl(pipeline_loop_->min, pipeline_loop_->min + max_stage_, true, true); Stmt body = EmitImpl(pipeline_loop_->min + max_stage_, pipeline_loop_->min + pipeline_loop_->extent, false, false); Stmt epilogue = EmitImpl( pipeline_loop_->min + pipeline_loop_->extent, pipeline_loop_->min + pipeline_loop_->extent + max_stage_, true, true); SeqStmt stmt = SeqStmt({prologue, body, epilogue}); // Step 3: Make a new block that contains new buffer allocations after // pipeline rewriting. Array alloc_buffers; for (const auto &alloc : pipeline_allocs_) { alloc_buffers.push_back(buffer_remap_.Get(alloc).value_or(alloc)); buffer_data_to_buffer_.erase(alloc->data); } Block block = MakeBlock(stmt, buffer_data_to_buffer_); block.CopyOnWrite()->alloc_buffers = std::move(alloc_buffers); return BlockRealize({}, Bool(true), block); } private: /*! * \brief Analyze accesses to the buffers in the software pipeline. * * This method check the 'define' and 'use' stage of the buffers in the * software pipeline, which can be used to compute the number of versions * needed to maintain after rewriting. */ std::unordered_map GetBufferAccessInfo() { std::unordered_map infos; for (const auto &pair : pipeline_info_) { const Block &block = pair.first; int stage = pair.second.stage; max_stage_ = std::max(max_stage_, stage); for (const BufferRegion &write : block->writes) { if (!infos.count(write->buffer)) { infos.emplace(write->buffer, BufferAccessInfo{}); } auto &info = infos.at(write->buffer); if (info.def == -1) { info.def = stage; } else { info.def = std::min(info.def, stage); } } for (const BufferRegion &read : block->reads) { if (!infos.count(read->buffer)) { infos.emplace(read->buffer, BufferAccessInfo{}); } auto &info = infos.at(read->buffer); info.use = std::max(info.use, stage); } } return infos; } /*! * \brief Check whether two regions have intersections. * \param region1 The first region. * \param region2 The second region. * \return Whether region1 and region2 have intersections. */ bool MayConflict(const Region ®ion1, const Region ®ion2) { ICHECK(region1.size() == region2.size()); for (size_t i = 0; i < region1.size(); i++) { Range dim1 = region1[i]; Range dim2 = region2[i]; auto int_set1 = arith::IntSet::FromRange(dim1); auto int_set2 = arith::IntSet::FromRange(dim2); if (arith::Intersect({int_set1, int_set2}).IsNothing()) { return false; } } return true; } /*! * \brief Compute the number of versions need to maintain for buffer accessed * in the software pipeline. * * This method applies liveness analysis to the target buffer to compute the * number of versions need to maintain during the software pipeline. * Annotation `attr::double_buffer_scope` is handled here which provides a way * to override the result of the analysis. Additional double buffering in the * software pipeline can be useful to eliminate synchronizations in GPU * devices. * * \param buffer The target buffer * \param buffer_info The access information of the target buffer. * \return The number of versions required for the target buffer. */ int ComputeBufferVersions(const Buffer &buffer, const BufferAccessInfo &buffer_info) { if (buffer_info.def == -1) { // Keep the original number of versions as buffers defined outside the // software pipeline should not be mutated. return 1; } // `use - def + 1` is a upper bound of the needed versions // We optimize a few case where the number of versions can be smaller than // the upper bound int num_versions = buffer_info.use - buffer_info.def + 1; if (num_versions >= 2) { // A special case when `use - def + 1 == 2`. Double buffering is only // needed in this case when these exists a reader block_i and a writer // block_j such that order(block_i) < order(block_j) and stage(block_i) < // stage(block_j) and the access regions of block_i and block_j overlap. bool need_multi_version = false; for (const auto &pair1 : pipeline_info_) { const Block &writer_block = pair1.first; const auto &writer_info = pair1.second; auto it1 = std::find_if(writer_block->writes.begin(), writer_block->writes.end(), [&](const BufferRegion &buffer_region) { return buffer_region->buffer.same_as(buffer); }); if (it1 == writer_block->writes.end()) { continue; } for (const auto &pair2 : pipeline_info_) { const Block &reader_block = pair2.first; const auto &reader_info = pair2.second; auto it2 = std::find_if( reader_block->reads.begin(), reader_block->reads.end(), [&](const BufferRegion &buffer_region) { return buffer_region->buffer.same_as(buffer); }); if (it2 == reader_block->reads.end()) { continue; } if (writer_info.order < reader_info.order && writer_info.stage < reader_info.stage && MayConflict((*it1)->region, (*it2)->region)) { need_multi_version = true; break; } } } if (!need_multi_version) { num_versions--; } } return num_versions; } /*! * \brief Rewrite buffer allocation to keep multiple versions of original * buffer for pipelined accesses. \param buffer The buffer to be resized. * \param num_versions The number of versions to keep. * \return The resized buffer. */ Buffer RewriteAllocBuffer(const Buffer &buffer, int num_versions) { ObjectPtr new_buffer = make_object(*(buffer.get())); new_buffer->shape.insert(new_buffer->shape.begin(), PrimExpr(num_versions)); if (!new_buffer->strides.empty()) { ICHECK(new_buffer->strides.size() + 1 == new_buffer->shape.size()); PrimExpr stride_0 = new_buffer->strides[0] * new_buffer->shape[1]; new_buffer->strides.insert(new_buffer->strides.begin(), stride_0); } return Buffer(new_buffer); } // Per-stage states that need to be tracked across pipeline prologue, body, // and epilogue. struct AsyncStateGlobal { // Buffers that this stage asynchronously writes. std::unordered_set dst_buffers; // An imaginary index that the latest async operation associated with this // stage has written into. Only valid if all associated predicates are true, // so that we can count the number of async invocations exactly. When it is // valid, it is the "sum of extents of loops that have been executed" - 1, // e.g. for epilogue it is prologue extent + body extent - 1. This is only // needed to compute wait count for epilogue without async producers. PrimExpr producer_head; std::vector> commit_groups; std::unordered_map buffer_to_commit_group_; bool writes(const Buffer &buf) const { return dst_buffers.count(buf.get()) > 0; } }; // Per-stage states that are local to each of pipeline prologue, body, and // epilogue. struct AsyncStateLocal { struct PendingWait { // The index into a list of blocks, where async_wait_queue should be // attached at the beginning. int insert_before; // in_flight_count would be a more precise name, but the implementation // uses wait_count for brevity. PrimExpr wait_count{nullptr}; bool valid() const { return wait_count.defined(); } }; std::vector pending_waits; // A symbolic expression representing the index the latest async operation // associated with this stage has written into, at the "current" iteration. Optional producer_head; }; /*! Structure holding intermediate information for pipeline loop rewriting. */ struct RewrittenBlockInfo { int stage; int order; PrimExpr predicate; Block block; PrimExpr access_index; bool is_async; }; void PopulateWaitCounts(const std::vector &new_blocks, std::map *async_states_local) { for (size_t i = 0; i < new_blocks.size(); ++i) { int producer_stage_idx = -1; for (auto read_region : new_blocks[i].block->reads) { for (const auto &[stage, state] : async_states) { if (stage <= new_blocks[i].stage && state.writes(read_region->buffer)) { // Found an earlier stage where read_region->buffer was // asynchronously written ICHECK(producer_stage_idx == -1 || producer_stage_idx == stage) << "A dependency on multiple async stages is not supported"; producer_stage_idx = stage; } } } if (producer_stage_idx == -1) continue; const auto &state = async_states[producer_stage_idx]; auto &dep_local_state = (*async_states_local)[producer_stage_idx]; PrimExpr in_flight_cnt = 0; for (const auto &group : state.commit_groups) { PrimExpr consumer_head = new_blocks[i].access_index; PrimExpr producer_head; if (dep_local_state.producer_head.defined()) { producer_head = dep_local_state.producer_head.value(); // if the group is after the wait point, minus by 1 if (group.front() > new_blocks[i].order) producer_head -= 1; } else { producer_head = state.producer_head; } in_flight_cnt += producer_head - consumer_head; } // We can relax the in-flight-count by the number of independent commit. std::unordered_set dependent_groups; for (const auto &read_region : new_blocks[i].block->reads) { if (state.buffer_to_commit_group_.count(read_region->buffer.get())) dependent_groups.insert( state.buffer_to_commit_group_.at(read_region->buffer.get())); } for (int i = int(state.commit_groups.size()) - 1; i >= 0; i--) { if (dependent_groups.count(i) == 0) in_flight_cnt += 1; else break; // stop relaxing } in_flight_cnt = analyzer_.Simplify(in_flight_cnt); dep_local_state.pending_waits.push_back( {static_cast(i), in_flight_cnt}); } } // Given pipelined blocks and async-related information, generate final loop // statements with async scopes (if any). Array CompletePipelineLoopStatements( const std::vector &blocks, const std::map &async_states_local) const { std::vector new_blocks = blocks; for (const auto &[stage_id, state] : async_states_local) { for (const auto &pw : state.pending_waits) { auto &block = new_blocks[pw.insert_before].block; BlockNode *n = block.CopyOnWrite(); auto zero = make_zero(DataType::Int(32)); n->body = AttrStmt(zero, tir::attr::async_wait_queue_scope, stage_id, AttrStmt(zero, tir::attr::async_wait_inflight_count, pw.wait_count, n->body)); } } // mark the last async stmt as commit std::unordered_set commit_group_indices; for (const auto &[stage_id, state] : async_states) { for (size_t i = 0; i < state.commit_groups.size(); ++i) { commit_group_indices.insert(state.commit_groups[i].back()); } } Array stmts; for (size_t i = 0; i < new_blocks.size(); i++) { Block block = new_blocks[i].block; if (commit_group_indices.count(new_blocks[i].order)) { auto commit_queue_scope = AttrStmt(make_zero(DataType::Int(32)), tir::attr::async_commit_queue_scope, new_blocks[i].stage, block->body); block = MakeBlock(commit_queue_scope, buffer_data_to_buffer_); } stmts.push_back(BlockRealize({}, new_blocks[i].predicate, block)); } return stmts; } /*! * \brief Emit the pipeline loop in the given range. * \param start The start of the range * \param end The end of the range * \param unroll_loop Whether the loop should be unrolled. * \return The result loop. */ Stmt EmitImpl(const PrimExpr &start, const PrimExpr &end, bool unroll_loop, bool need_bound_check) { PrimExpr new_loop_var; PrimExpr extent = end - start; auto make_nop = []() { return BlockRealize({}, Bool(true), MakeBlock(Evaluate(0), {})); }; bool is_unit_loop = analyzer_.CanProveEqual(extent, 1); if (is_unit_loop) { new_loop_var = start; // use constants as the loop var for unit loops } else { new_loop_var = pipeline_loop_->loop_var.copy_with_suffix(""); analyzer_.Bind(Downcast(new_loop_var), Range(start, end)); } std::vector new_blocks; // Async related std::map async_states_local; for (const Block &block : ordered_stmts_) { int stage = pipeline_info_.at(block).stage; int order = pipeline_info_.at(block).order; PrimExpr inbound = Bool(true); PrimExpr skewed_loop_var = new_loop_var - stage; if (need_bound_check) inbound = analyzer_.Simplify(pipeline_loop_->min <= skewed_loop_var) && (skewed_loop_var < pipeline_loop_->min + pipeline_loop_->extent); if (analyzer_.CanProve(!inbound)) { continue; } Block new_block = Downcast( PipelineBodyRewriter(buffer_data_to_buffer_, buffer_remap_, pipeline_loop_, max_stage_ != 1)(block)); PrimExpr delta = start - pipeline_loop_->min; // This variable corresponds to // - "producer_head" if this stage is an async producer // - "consumer_head" if this stage reads from asynchronously written // buffers. PrimExpr normalized_access_index = is_unit_loop ? skewed_loop_var : skewed_loop_var + delta; // Adjust the block predicate and the body according to the final loop // bound // [pipeline_loop_->min, extent). if (!is_unit_loop) { Var loop_iter = Downcast(new_loop_var); inbound = Substitute(inbound, {{loop_iter, loop_iter + delta}}); } new_block = Downcast(Substitute( new_block, {{pipeline_loop_->loop_var, normalized_access_index}})); if (pipeline_info_[block].async) { auto &local_state = async_states_local[stage]; local_state.producer_head = normalized_access_index; BlockNode *n = new_block.CopyOnWrite(); n->body = AttrStmt(make_zero(DataType::Int(32)), tir::attr::async_scope, 1, n->body); } new_blocks.push_back({stage, order, inbound, new_block, normalized_access_index, pipeline_info_[block].async}); } PopulateWaitCounts(new_blocks, &async_states_local); auto stmts = CompletePipelineLoopStatements(new_blocks, async_states_local); Stmt new_loop{nullptr}; if (stmts.empty()) { return make_nop(); } if (stmts.size() == 1) { new_loop = stmts[0]; } else { new_loop = SeqStmt(stmts); } if (!is_unit_loop) { Map preserved_annotations; for (const auto &kv : pipeline_loop_->annotations) { const String &key = kv.first; if (kv.first != tir::attr::software_pipeline_stage && kv.first != tir::attr::software_pipeline_order && kv.first != tir::attr::software_pipeline_async_stages) { preserved_annotations.Set(key, kv.second); } } new_loop = For(Downcast(new_loop_var), pipeline_loop_->min, extent, unroll_loop ? ForKind::kUnrolled : pipeline_loop_->kind, std::move(new_loop), std::nullopt, preserved_annotations); } // Update producer heads in the global async states. for (const auto &[stage_id, state] : async_states_local) { async_states[stage_id].producer_head += extent; } return BlockRealize({}, Bool(true), MakeBlock(new_loop, buffer_data_to_buffer_)); } arith::Analyzer analyzer_; Map buffer_data_to_buffer_; Array pipeline_allocs_; For pipeline_loop_; PipelineInfo pipeline_info_; int max_stage_ = -1; Map buffer_remap_; Array ordered_stmts_; std::map async_states; }; /*! * \brief Build the dependency graph among a array of blocks. * \param[in] blocks The array of blocks. * \param[out] dep_src2dst Optional, a map to store dependency edges from the * source to the destination. \param[out] dep_dst2src Optional, a map to store * dependency edges from the destination to the source. */ void BuildDependencyGraph(const Array &blocks, std::unordered_map, ObjectPtrHash, ObjectPtrEqual> *dep_src2dst, std::unordered_map, ObjectPtrHash, ObjectPtrEqual> *dep_dst2src) { std::unordered_map, ObjectPtrHash, ObjectPtrEqual> buffer_writers; for (const Block &block : blocks) { for (const BufferRegion &read : block->reads) { auto it = buffer_writers.find(read->buffer->data); if (it != buffer_writers.end()) { for (const Block &writer : it->second) { if (dep_src2dst != nullptr) { (*dep_src2dst)[writer].push_back(block); } if (dep_dst2src != nullptr) { (*dep_dst2src)[block].push_back(writer); } } } } for (const BufferRegion &write : block->writes) { buffer_writers[write->buffer->data].push_back(block); } } } class PipelineInjector : private StmtExprMutator { public: static Stmt Inject(const PrimFunc &func) { auto global_symbol = func->GetAttr(tvm::attr::kGlobalSymbol); PipelineInjector injector(global_symbol); for (const auto &kv : func->buffer_map) { const Buffer &buffer = kv.second; injector.buffer_data_to_buffer_.Set(buffer->data, buffer); } return injector(func->body); } private: explicit PipelineInjector(Optional global_symbol) : global_symbol_(std::move(global_symbol)) {} /*! * \brief Check the pipeline satisfies the following conditions: * 1. No conflicting order: The order of each statement should be unique. * 2. Reordering of statements doesn't break buffer access dependencies. * Specifically, for dependency (e.g. read-after-write) from statement A to * statement B, it requires: case 1: stage(A) < stage(B) case 2: stage(A) == * stage(B) and order(A) < order(B) */ void ValidatePipelineBody(const PipelineInfo &pipeline_info, const Array &original_order) { std::unordered_set used_orders; std::unordered_map stage_max_order; std::unordered_map order_to_block; std::unordered_map block_to_stage; for (const Block &block : original_order) { const auto &stmt_info = pipeline_info.at(block); int order = stmt_info.order; CHECK(!used_orders.count(order)) << "ValueError: Two statements in the software pipeline cannot have " "the same order"; used_orders.insert(order); } std::unordered_map, ObjectPtrHash, ObjectPtrEqual> dep_src2dst; BuildDependencyGraph(original_order, &dep_src2dst, nullptr); for (const auto &pair : dep_src2dst) { const Block &src = pair.first; const auto &src_info = pipeline_info.at(src); const Array &dsts = pair.second; for (const Block &dst : dsts) { const auto &dst_info = pipeline_info.at(dst); CHECK_LE(src_info.stage, dst_info.stage) << "ValueError: statement " << dst << " in stage " << dst_info.stage << " cannot depends on statement " << src << " in a later stage " << src_info.stage; if (src_info.stage == dst_info.stage) { CHECK_LT(src_info.order, dst_info.order) << "ValueError: two statements with buffer " "access dependency in the same stage of the " "software pipeline cannot be reordered"; } } } } Stmt VisitStmt_(const ForNode *op) final { // Step 1: Recursively rewrite the children first. For for_node = Downcast(StmtExprMutator::VisitStmt_(op)); if (!HasPipelineAnnotation(op)) { return for_node; } // Step 2: Find the body and buffer allocations of the pipeline. The body // can be direct child of the for-loop. If the for-loop has BlockRealize as // its child, the pipeline body will be the child of the block. Stmt pipeline_body_root{nullptr}; bool pipeline_body_from_block = false; Array pipeline_allocs; if (const auto *realize = for_node->body.as()) { const auto &block = realize->block; for (const auto &buffer : block->alloc_buffers) { ICHECK(buffer->IsInstance()); buffer_data_to_buffer_.Set(buffer->data, buffer); } pipeline_body_root = block->body; pipeline_allocs = block->alloc_buffers; pipeline_body_from_block = true; } else { pipeline_body_root = for_node->body; } const SeqStmtNode *pipeline_body_seq = nullptr; std::vector> rewrap_fns; auto append_attr_wrapper = [&rewrap_fns](const AttrStmtNode *attr) { ObjectRef node = attr->node; String attr_key = attr->attr_key; PrimExpr value = attr->value; Span span = attr->span; rewrap_fns.emplace_back( [node = std::move(node), attr_key = std::move(attr_key), value = std::move(value), span](Stmt body) -> Stmt { return AttrStmt(node, attr_key, value, body, span); }); }; { Stmt current = pipeline_body_root; while (true) { if (const auto *seq_stmt = current.as()) { pipeline_body_seq = seq_stmt; break; } if (const auto *if_then_else = current.as()) { ICHECK(!if_then_else->else_case.defined()) << "InjectSoftwarePipeline: Can't handle the body of the loop " "because the IfThenElse node has an else branch"; PrimExpr condition = if_then_else->condition; Span span = if_then_else->span; rewrap_fns.emplace_back( [condition = std::move(condition), span](Stmt body) -> Stmt { return IfThenElse(condition, body, Stmt(), span); }); current = if_then_else->then_case; continue; } if (const auto *let_stmt = current.as()) { Var var = let_stmt->var; PrimExpr value = let_stmt->value; Span span = let_stmt->span; rewrap_fns.emplace_back([var = std::move(var), value = std::move(value), span](Stmt body) -> Stmt { return LetStmt(var, value, body, span); }); current = let_stmt->body; continue; } if (const auto *attr = current.as()) { append_attr_wrapper(attr); current = attr->body; continue; } LOG(FATAL) << "ValueError: The body of the software pipeline should be " << "SeqStmt, got " << current->GetTypeKey(); } } ICHECK(pipeline_body_seq != nullptr); // Step 3: Blockize the components of the pipeline. Each child of the // pipelined loop will be converted into a block. PipelineInfo pipeline_info; Array original_order; // pipeline body blocks in the original order auto f_add_child = [&](const Stmt &child) { original_order.push_back(MakeBlock(child, buffer_data_to_buffer_)); }; for (size_t i = 0; i < pipeline_body_seq->seq.size(); i++) { const Stmt &child = pipeline_body_seq->seq[i]; const auto *nested_block_realize = child.as(); if (nested_block_realize && is_one(nested_block_realize->predicate) && nested_block_realize->block->body->IsInstance()) { const Block &nested_pipeline_block = nested_block_realize->block; ICHECK(nested_pipeline_block->match_buffers .empty()); // match_buffer should have been lowered for (const auto &buffer : nested_pipeline_block->alloc_buffers) { pipeline_allocs.push_back(buffer); buffer_data_to_buffer_.Set(buffer->data, buffer); } } f_add_child(child); } auto pipeline_stages = Downcast>( op->annotations.at(tir::attr::software_pipeline_stage)); auto pipeline_orders = Downcast>( op->annotations.at(tir::attr::software_pipeline_order)); CHECK_EQ(pipeline_stages.size(), original_order.size()) << "PrimFunc " << global_symbol_ << " has original order " << original_order.Map( [](const auto &block) { return block->name_hint; }) << ", but pipeline annotation is " << pipeline_stages << " with different size"; CHECK_EQ(pipeline_orders.size(), original_order.size()) << "PrimFunc " << global_symbol_ << " has original order " << original_order.Map( [](const auto &block) { return block->name_hint; }) << ", but pipeline annotation is " << pipeline_orders << " with different size"; std::unordered_set pipeline_async_stages; if (auto annot = op->annotations.Get(tir::attr::software_pipeline_async_stages)) { for (auto s : Downcast>(annot.value())) { pipeline_async_stages.insert(s->value); } } for (size_t i = 0; i < pipeline_stages.size(); i++) { int stage = static_cast(pipeline_stages[i]->value); bool is_async = pipeline_async_stages.find(stage) != pipeline_async_stages.end(); PipelineAnnotation stage_order{ stage, /*order=*/static_cast(pipeline_orders[i]->value), is_async}; pipeline_info.emplace(original_order[i], stage_order); } ValidatePipelineBody(pipeline_info, original_order); // Step 4: Rewrite the pipeline body. Stmt pipeline = PipelineRewriter(buffer_data_to_buffer_, pipeline_allocs, GetRef(op), pipeline_info) .BuildPipeline(); auto apply_wrappers = [&](Stmt stmt) { for (auto it = rewrap_fns.rbegin(); it != rewrap_fns.rend(); ++it) { stmt = (*it)(stmt); } return stmt; }; if (!rewrap_fns.empty()) { if (pipeline_body_from_block) { BlockRealize pipeline_realize = Downcast(pipeline); Block pipeline_block = pipeline_realize->block; { BlockNode *block_node = pipeline_block.CopyOnWrite(); block_node->body = apply_wrappers(block_node->body); } pipeline = BlockRealize(pipeline_realize->iter_values, pipeline_realize->predicate, pipeline_block, pipeline_realize->span); } else { pipeline = apply_wrappers(pipeline); } } if (const auto *realize = op->body.as()) { const auto &block = realize->block; for (const auto &buffer : block->alloc_buffers) { buffer_data_to_buffer_.erase(buffer->data); } } return pipeline; } Stmt VisitStmt_(const BlockNode *op) final { for (const auto &buffer : op->alloc_buffers) { buffer_data_to_buffer_.Set(buffer->data, buffer); } Block block = Downcast(StmtExprMutator::VisitStmt_(op)); Array> access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_); BlockNode *n = block.CopyOnWrite(); n->reads = access[0]; n->writes = access[1]; for (const auto &buffer : op->alloc_buffers) { buffer_data_to_buffer_.erase(buffer->data); } return block; } bool HasPipelineAnnotation(const ForNode *op) const { auto it1 = op->annotations.find(tir::attr::software_pipeline_stage); auto it2 = op->annotations.find(tir::attr::software_pipeline_order); bool has_stage = it1 != op->annotations.end(); bool has_order = it2 != op->annotations.end(); if (has_stage && has_order) { return true; } if (has_stage) { LOG(FATAL) << "ValueError: Stage of the software pipeline is not defined."; } if (has_order) { LOG(FATAL) << "ValueError: Order of the software pipeline is not defined."; } return false; } Map buffer_data_to_buffer_; Optional global_symbol_; }; } // namespace software_pipeline /*! * \brief Transform annotated loops into pipelined one that parallelize * producers and consumers. \return The IR transform pass. */ tir::transform::Pass InjectSoftwarePipeline() { using namespace tir::transform; auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) { auto *fptr = f.CopyOnWrite(); fptr->body = software_pipeline::PipelineInjector::Inject(f); fptr->body = ConvertSSA(std::move(fptr->body)); return f; }; return CreatePrimFuncPass(pass_func, 0, "tl.InjectSoftwarePipeline", {}); } TVM_FFI_STATIC_INIT_BLOCK({ namespace refl = tvm::ffi::reflection; refl::GlobalDef().def("tl.transform.InjectSoftwarePipeline", InjectSoftwarePipeline); }); } // namespace tl } // namespace tvm