example_linear_attn_fwd.py 5.85 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import tilelang
import tilelang.language as T
from tilelang.profiler import do_bench
import argparse
from fla.ops.linear_attn import fused_chunk_linear_attn  # We compare with FLA
from fla.modules.l2norm import l2norm_fwd
from einops import rearrange
from typing import Optional, Tuple


@tilelang.jit(
    out_idx=[4],
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
    })
def tl_fused_chunk_fwd_kernel(
    B,
    S,
    H,
    DK,
    DV,
    dtype: str = 'float16',
    scale: float = None,
) -> torch.Tensor:

    if scale is None:
        scale = DK**-0.5
    accum_dtype = 'float'

    chunk_size = 64
    BK = BV = 64  # Set to 128 can be faster, but has some numerical differences with FLA
    assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0
    NK = tilelang.cdiv(DK, BK)
    NV = tilelang.cdiv(DV, BV)
    NT = tilelang.cdiv(S, chunk_size)

    @T.prim_func
    def fused_chunk_linear_attn_fwd(
            Q: T.Tensor([B, S, H, DK], dtype),  # type: ignore
            K: T.Tensor([B, S, H, DK], dtype),  # type: ignore
            V: T.Tensor([B, S, H, DV], dtype),  # type: ignore
            O: T.Tensor([B, S, H, DV], accum_dtype),  # type: ignore
            final_state: T.Tensor([B, H, DK, DV], accum_dtype)):  # type: ignore
        with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh):
            i_b = i_bh // H
            i_h = i_bh % H

            q = T.alloc_shared([chunk_size, BK], dtype)
            k = T.alloc_shared([chunk_size, BK], dtype)
            v = T.alloc_shared([chunk_size, BV], dtype)
            h = T.alloc_fragment([BK, BV], accum_dtype)
            h_shared = T.alloc_shared([BK, BV], dtype)
            s = T.alloc_fragment([chunk_size, chunk_size], accum_dtype)
            s_shared = T.alloc_shared([chunk_size, chunk_size], dtype)
            o = T.alloc_fragment([chunk_size, BV], accum_dtype)
            o_shared = T.alloc_shared([chunk_size, BV], accum_dtype)

            T.annotate_layout({o_shared: tilelang.layout.make_swizzled_layout(o_shared)})
            T.use_swizzle(10)

            T.clear(h)

            for i in T.Pipelined(0, NT):
                for row, col in T.Parallel(chunk_size, BK):
                    q[row, col] = Q[i_b, i * chunk_size + row, i_h, i_k * BK + col] * scale
                T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k)
                T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v)

                T.gemm(q, k, s, clear_accum=True, transpose_B=True)
                for row, col in T.Parallel(chunk_size, chunk_size):
                    s_shared[row, col] = T.if_then_else(row >= col, s[row, col], 0)

                T.gemm(s_shared, v, o, clear_accum=True)
                T.copy(h, h_shared)
                T.gemm(k, v, h, transpose_A=True)
                T.gemm(q, h_shared, o)
                T.copy(o, o_shared)
                T.atomic_add(
                    O[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV],
                    o_shared)
                #TODO: consider using vectorized atomic add or tma reduce for sm90

            # Output final state
            T.copy(h, final_state[i_b, i_h, i_k * BK:(i_k + 1) * BK, i_v * BV:(i_v + 1) * BV])

    return fused_chunk_linear_attn_fwd


def tl_fused_chunk_fwd(q, k, v):
    B, S, H, D = q.shape
    kernel = tl_fused_chunk_fwd_kernel(B, S, H, D, D)
    o = torch.zeros((B, S, H, D), device='cuda', dtype=torch.float32)
    h = kernel(q, k, v, o)
    return o, h


def ref_program(q: torch.Tensor,
                k: torch.Tensor,
                v: torch.Tensor,
                scale: Optional[float] = None) -> Tuple[torch.Tensor, torch.Tensor]:
    q, k, v = q.float(), k.float(), v.float()
    if scale is None:
        scale = q.shape[-1]**-0.5
    chunk_size = 64
    q = rearrange(q, 'b (n c) h d -> b h n c d', c=chunk_size) * scale
    k = rearrange(k, 'b (n c) h d -> b h n c d', c=chunk_size)
    v = rearrange(v, 'b (n c) h d -> b h n c d', c=chunk_size)
    kv = k.transpose(-1, -2) @ v
    kv = kv.cumsum(2)
    h = kv[:, :, -1, :, :]
    kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
    inter = q @ kv
    intra = ((q @ k.transpose(-1, -2)).masked_fill_(
        torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1),
        0)) @ v
    o = inter + intra
    return rearrange(o, 'b h n c d -> b (n c) h d'), h


def main(B=1, S=512, H=16, D=128):
    q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
    k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
    v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)

    # qk norm is necessary for linear attn
    q, _ = l2norm_fwd(q)
    k, _ = l2norm_fwd(k)

    o, h = tl_fused_chunk_fwd(q, k, v)
    o_ref, h_ref = ref_program(q, k, v)

    assert torch.allclose(o, o_ref, atol=1e-2, rtol=1e-2), f'o max err: {(o - o_ref).abs().max()}'
    assert torch.allclose(h, h_ref, atol=1e-2, rtol=1e-2), f'h max err: {(h - h_ref).abs().max()}'
    print('Passed all tests!✅')

    t1 = do_bench(
        lambda: fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False),
        backend='cupti')
    t2 = do_bench(lambda: tl_fused_chunk_fwd(q, k, v), backend='cupti')
    print(f'Triton latency: {t1:.3f} ms')
    print(f'TileLang latency: {t2:.3f} ms')
    print(f'Speedup: {t1/t2:.3f}x')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--B', type=int, default=8, help='Batch size')
    parser.add_argument('--S', type=int, default=1024, help='Seq len')
    parser.add_argument('--H', type=int, default=32, help='Num heads')
    parser.add_argument('--D', type=int, default=128, help='Head dim')
    args = parser.parse_args()

    main(args.B, args.S, args.H, args.D)