import torch import tilelang import tilelang.language as T from tilelang.profiler import do_bench import argparse from fla.ops.linear_attn import fused_chunk_linear_attn # We compare with FLA from fla.modules.l2norm import l2norm_fwd from einops import rearrange from typing import Optional, Tuple @tilelang.jit( out_idx=[4], pass_configs={ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, }) def tl_fused_chunk_fwd_kernel( B, S, H, DK, DV, dtype: str = 'float16', scale: float = None, ) -> torch.Tensor: if scale is None: scale = DK**-0.5 accum_dtype = 'float' chunk_size = 64 BK = BV = 64 # Set to 128 can be faster, but has some numerical differences with FLA assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0 NK = tilelang.cdiv(DK, BK) NV = tilelang.cdiv(DV, BV) NT = tilelang.cdiv(S, chunk_size) @T.prim_func def fused_chunk_linear_attn_fwd( Q: T.Tensor([B, S, H, DK], dtype), # type: ignore K: T.Tensor([B, S, H, DK], dtype), # type: ignore V: T.Tensor([B, S, H, DV], dtype), # type: ignore O: T.Tensor([B, S, H, DV], accum_dtype), # type: ignore final_state: T.Tensor([B, H, DK, DV], accum_dtype)): # type: ignore with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh): i_b = i_bh // H i_h = i_bh % H q = T.alloc_shared([chunk_size, BK], dtype) k = T.alloc_shared([chunk_size, BK], dtype) v = T.alloc_shared([chunk_size, BV], dtype) h = T.alloc_fragment([BK, BV], accum_dtype) h_shared = T.alloc_shared([BK, BV], dtype) s = T.alloc_fragment([chunk_size, chunk_size], accum_dtype) s_shared = T.alloc_shared([chunk_size, chunk_size], dtype) o = T.alloc_fragment([chunk_size, BV], accum_dtype) o_shared = T.alloc_shared([chunk_size, BV], accum_dtype) T.annotate_layout({o_shared: tilelang.layout.make_swizzled_layout(o_shared)}) T.use_swizzle(10) T.clear(h) for i in T.Pipelined(0, NT): for row, col in T.Parallel(chunk_size, BK): q[row, col] = Q[i_b, i * chunk_size + row, i_h, i_k * BK + col] * scale T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k) T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v) T.gemm(q, k, s, clear_accum=True, transpose_B=True) for row, col in T.Parallel(chunk_size, chunk_size): s_shared[row, col] = T.if_then_else(row >= col, s[row, col], 0) T.gemm(s_shared, v, o, clear_accum=True) T.copy(h, h_shared) T.gemm(k, v, h, transpose_A=True) T.gemm(q, h_shared, o) T.copy(o, o_shared) T.atomic_add( O[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], o_shared) #TODO: consider using vectorized atomic add or tma reduce for sm90 # Output final state T.copy(h, final_state[i_b, i_h, i_k * BK:(i_k + 1) * BK, i_v * BV:(i_v + 1) * BV]) return fused_chunk_linear_attn_fwd def tl_fused_chunk_fwd(q, k, v): B, S, H, D = q.shape kernel = tl_fused_chunk_fwd_kernel(B, S, H, D, D) o = torch.zeros((B, S, H, D), device='cuda', dtype=torch.float32) h = kernel(q, k, v, o) return o, h def ref_program(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, scale: Optional[float] = None) -> Tuple[torch.Tensor, torch.Tensor]: q, k, v = q.float(), k.float(), v.float() if scale is None: scale = q.shape[-1]**-0.5 chunk_size = 64 q = rearrange(q, 'b (n c) h d -> b h n c d', c=chunk_size) * scale k = rearrange(k, 'b (n c) h d -> b h n c d', c=chunk_size) v = rearrange(v, 'b (n c) h d -> b h n c d', c=chunk_size) kv = k.transpose(-1, -2) @ v kv = kv.cumsum(2) h = kv[:, :, -1, :, :] kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2) inter = q @ kv intra = ((q @ k.transpose(-1, -2)).masked_fill_( torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1), 0)) @ v o = inter + intra return rearrange(o, 'b h n c d -> b (n c) h d'), h def main(B=1, S=512, H=16, D=128): q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16) k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16) v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16) # qk norm is necessary for linear attn q, _ = l2norm_fwd(q) k, _ = l2norm_fwd(k) o, h = tl_fused_chunk_fwd(q, k, v) o_ref, h_ref = ref_program(q, k, v) assert torch.allclose(o, o_ref, atol=1e-2, rtol=1e-2), f'o max err: {(o - o_ref).abs().max()}' assert torch.allclose(h, h_ref, atol=1e-2, rtol=1e-2), f'h max err: {(h - h_ref).abs().max()}' print('Passed all tests!✅') t1 = do_bench( lambda: fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False), backend='cupti') t2 = do_bench(lambda: tl_fused_chunk_fwd(q, k, v), backend='cupti') print(f'Triton latency: {t1:.3f} ms') print(f'TileLang latency: {t2:.3f} ms') print(f'Speedup: {t1/t2:.3f}x') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--B', type=int, default=8, help='Batch size') parser.add_argument('--S', type=int, default=1024, help='Seq len') parser.add_argument('--H', type=int, default=32, help='Num heads') parser.add_argument('--D', type=int, default=128, help='Head dim') args = parser.parse_args() main(args.B, args.S, args.H, args.D)