"lmdeploy/lite/apis/auto_awq.py" did not exist on "0d9c6c9d56911ee8e8503614ba599ff0e48253a0"
demo_gradio.py 7.68 KB
Newer Older
suily's avatar
init  
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py 
"""
import argparse
import os
root_dir = os.path.join(os.getcwd(), "..")
import sys
sys.path.append(root_dir)

import torch
import gradio as gr

import decord
decord.bridge.set_bridge('torch')

from vtimellm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from vtimellm.conversation import conv_templates, SeparatorStyle
from vtimellm.model.builder import load_pretrained_model
from vtimellm.utils import disable_torch_init
from vtimellm.mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, VideoExtractor
from PIL import Image
from transformers import TextStreamer
try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    from PIL import Image
    BICUBIC = Image.BICUBIC
from torchvision.transforms import Compose, Resize, CenterCrop, Normalize
import clip

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--gpu_id", type=int, default=0, help="specify the gpu to load the model.")
    parser.add_argument("--model_base", type=str, required=True, help="Path to your vicuna-7b-v1.5 huggingface checkpoint")
    parser.add_argument("--clip_path", type=str, default=os.path.join(root_dir, "checkpoints/clip/ViT-L-14.pt"))
    parser.add_argument("--pretrain_mm_mlp_adapter", type=str, default=os.path.join(root_dir, "checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin"))
    parser.add_argument("--stage2", type=str, default=os.path.join(root_dir, "checkpoints/vtimellm-vicuna-v1-5-7b-stage2"))
    parser.add_argument("--stage3", type=str, default=os.path.join(root_dir, "checkpoints/vtimellm-vicuna-v1-5-7b-stage3"))
    parser.add_argument("--share", action='store_true')
    args = parser.parse_args()
    return args

# ========================================
#             Model Initialization
# ========================================

args = parse_args()
device = f'cuda:{args.gpu_id}'

disable_torch_init()
tokenizer, model, context_len = load_pretrained_model(args, args.stage2, args.stage3)
model = model.to(torch.float16).to(device)

clip_model, _ = clip.load(args.clip_path)
clip_model.eval()
clip_model = clip_model.to(device)

transform = Compose([
    Resize(224, interpolation=BICUBIC),
    CenterCrop(224),
    Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])

print('Initialization Finished')

# ========================================
#             Gradio Setting
# ========================================

TEXT_PLACEHOLDER = 'Upload your video first, or directly click the examples at the bottom of the page.'

def gradio_reset(chat_state, video_features_state, conv_state):
    if chat_state is not None:
        chat_state.messages = []
    video_features_state = None
    conv_state = {}
    return None, gr.update(value=None, interactive=True), gr.update(value='', placeholder=TEXT_PLACEHOLDER, interactive=False), gr.update(value="Upload & Start Chat", interactive=True), chat_state, video_features_state, conv_state

def upload_video(gr_video, chat_state, video_features_state, conv_state, chatbot):
    if not gr_video:
        return None, None, gr.update(interactive=True), chat_state, video_features_state, conv_state, None
    else:
        print(gr_video)
        video_loader = VideoExtractor(N=100)
        _, images = video_loader.extract({'id': None, 'video': gr_video})

        transform = Compose([
            Resize(224, interpolation=BICUBIC),
            CenterCrop(224),
            Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
        ])

        # print(images.shape) # <N, 3, H, W>
        images = transform(images / 255.0)
        images = images.to(torch.float16)
        with torch.no_grad():
            video_features_state = clip_model.encode_image(images.to('cuda'))

        chatbot = chatbot + [((gr_video,), None)]
        chat_state = conv_templates["v1"].copy()
        conv_state['first'] = True

        return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, video_features_state, conv_state, chatbot

def gradio_ask(user_message, chatbot, chat_state, conv_state):
    if len(user_message) == 0:
        conv_state['should_answer'] = False
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state, conv_state
    conv_state['should_answer'] = True
    chatbot = chatbot + [[user_message, None]]
    if conv_state['first']:
        user_message = DEFAULT_IMAGE_TOKEN + '\n' + user_message
        conv_state['first'] = False
    chat_state.append_message(chat_state.roles[0], user_message)
    chat_state.append_message(chat_state.roles[1], None)
    return '', chatbot, chat_state, conv_state


def gradio_answer(chatbot, chat_state, video_features_state, conv_state, temperature):
    if not conv_state['should_answer']:
        return chatbot, chat_state
    prompt = chat_state.get_prompt()
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
    stop_str = chat_state.sep if chat_state.sep_style != SeparatorStyle.TWO else chat_state.sep2 # plain:sep(###) v1:sep2(None)
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=video_features_state[None,].to(device),
            do_sample=True,
            temperature=temperature,
            max_new_tokens=1024,
            streamer=streamer,
            use_cache=True,
            stopping_criteria=[stopping_criteria]
        )

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    chat_state.messages[-1][-1] = outputs

    chatbot[-1][1] = outputs
    print(chat_state.get_prompt())
    print(chat_state)
    return chatbot, chat_state

with gr.Blocks() as demo:
    gr.Markdown('''# Demo for VTimeLLM''')

    with gr.Row():
        with gr.Column(scale=0.5):
            video = gr.Video()

            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            clear = gr.Button("Reset")
            
            temperature = gr.Slider(
                minimum=0,
                maximum=2.0,
                value=0.05,
                step=0.01,
                interactive=True,
                label="Temperature",
            )
        with gr.Column():
            chat_state = gr.State()
            video_features_state = gr.State()
            conv_state = gr.State({})
            chatbot = gr.Chatbot(label='VTimeLLM')
            text_input = gr.Textbox(label='User', placeholder=TEXT_PLACEHOLDER, interactive=False)
            

    with gr.Column():
        gr.Examples(examples=[
            [os.path.join(root_dir, f"images/demo.mp4"), "Explain why the video is funny."],
        ], inputs=[video, text_input])
        
    upload_button.click(upload_video, [video, chat_state, video_features_state, conv_state, chatbot], [video, text_input, upload_button, chat_state, video_features_state, conv_state, chatbot])
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state, conv_state], [text_input, chatbot, chat_state, conv_state]).then(gradio_answer, [chatbot, chat_state, video_features_state, conv_state, temperature], [chatbot, chat_state])
    clear.click(gradio_reset, [chat_state, video_features_state, conv_state], [chatbot, video, text_input, upload_button, chat_state, video_features_state, conv_state], queue=False)

demo.queue().launch(share=args.share)