"vscode:/vscode.git/clone" did not exist on "2700abb30758b78d19a532fcf1503d73fcdc61c8"
- 20 Dec, 2022 2 commits
-
-
Patrick von Platen authored
-
Ilmari Heikkinen authored
* only check for xformers when xformers are enabled * only test for xformers when enabling them
-
- 19 Dec, 2022 3 commits
-
-
Patrick von Platen authored
-
Anton Lozhkov authored
-
Patrick von Platen authored
* Remove bogus file * [Unclip] Add efficient attention * [Unclip] Add efficient attention
-
- 18 Dec, 2022 1 commit
-
-
Will Berman authored
* [wip] attention block updates * [wip] unCLIP unet decoder and super res * [wip] unCLIP prior transformer * [wip] scheduler changes * [wip] text proj utility class * [wip] UnCLIPPipeline * [wip] kakaobrain unCLIP convert script * [unCLIP pipeline] fixes re: @patrickvonplaten remove callbacks move denoising loops into call function * UNCLIPScheduler re: @patrickvonplaten Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified DDPM scheduler with changes to support karlo * mask -> attention_mask re: @patrickvonplaten * [DDPMScheduler] remove leftover change * [docs] PriorTransformer * [docs] UNet2DConditionModel and UNet2DModel * [nit] UNCLIPScheduler -> UnCLIPScheduler matches existing unclip naming better * [docs] SchedulingUnCLIP * [docs] UnCLIPTextProjModel * refactor * finish licenses * rename all to attention_mask and prep in models * more renaming * don't expose unused configs * final renaming fixes * remove x attn mask when not necessary * configure kakao script to use new class embedding config * fix copies * [tests] UnCLIPScheduler * finish x attn * finish * remove more * rename condition blocks * clean more * Apply suggestions from code review * up * fix * [tests] UnCLIPPipelineFastTests * remove unused imports * [tests] UnCLIPPipelineIntegrationTests * correct * make style Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 09 Dec, 2022 1 commit
-
-
Patrick von Platen authored
* do not automatically enable xformers * uP
-
- 07 Dec, 2022 3 commits
-
-
Suraj Patil authored
* fix upcast in slice attention * fix dtype * add test * fix test
-
Suraj Patil authored
upcast attention
-
Patrick von Platen authored
* add paint by example * mkae loading possibel * up * Update src/diffusers/models/attention.py * up * finalize weight structure * make example work * make it work * up * up * fix * del * add * update * Apply suggestions from code review * correct transformer 2d * finish * up * up * up * up * fix * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Apply suggestions from code review * up * finish Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 05 Dec, 2022 1 commit
-
-
Suraj Patil authored
* make attn slice recursive * remove set_attention_slice from blocks * fix copies * make enable_attention_slicing base class method of DiffusionPipeline * fix set_attention_slice * fix set_attention_slice * fix copies * add tests * up * up * up * update * up * uP Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 03 Dec, 2022 1 commit
-
-
Ilmari Heikkinen authored
* Add xformers attention to VAE * Simplify VAE xformers code * Update src/diffusers/models/attention.py Co-authored-by:
Ilmari Heikkinen <ilmari@fhtr.org> Co-authored-by:
Suraj Patil <surajp815@gmail.com>
-
- 02 Dec, 2022 1 commit
-
-
Benjamin Lefaudeux authored
* Moving the mem efficiient attention activation to the top + recursive * black, too bad there's no pre-commit ? Co-authored-by:Benjamin Lefaudeux <benjamin@photoroom.com>
-
- 01 Dec, 2022 1 commit
-
-
Suraj Patil authored
-
- 25 Nov, 2022 1 commit
-
-
Kashif Rasul authored
* call contiguous after permute Fixes for MPS device * Fix MPS UserWarning * make style * Revert "Fix MPS UserWarning" This reverts commit b46c32810ee5fdc4c16a8e9224a826490b66cf49.
-
- 24 Nov, 2022 1 commit
-
-
Suraj Patil authored
* allow disabling self attention * add class_embedding * fix copies * fix condition * fix copies * do_self_attention -> only_cross_attention * fix copies * num_classes -> num_class_embeds * fix default value
-
- 23 Nov, 2022 3 commits
-
-
Suraj Patil authored
don't norm twice
-
Suraj Patil authored
* boom boom * remove duplicate arg * add use_linear_proj arg * fix copies * style * add fast tests * use_linear_proj -> use_linear_projection
-
Patrick von Platen authored
* up * convert dual unet * revert dual attn * adapt for vd-official * test the full pipeline * mixed inference * mixed inference for text2img * add image prompting * fix clip norm * split text2img and img2img * fix format * refactor text2img * mega pipeline * add optimus * refactor image var * wip text_unet * text unet end to end * update tests * reshape * fix image to text * add some first docs * dual guided pipeline * fix token ratio * propose change * dual transformer as a native module * DualTransformer(nn.Module) * DualTransformer(nn.Module) * correct unconditional image * save-load with mega pipeline * remove image to text * up * uP * fix * up * final fix * remove_unused_weights * test updates * save progress * uP * fix dual prompts * some fixes * finish * style * finish renaming * up * fix * fix * fix * finish Co-authored-by:anton-l <anton@huggingface.co>
-
- 22 Nov, 2022 1 commit
-
-
Suraj Patil authored
* use memory_efficient_attention by default * Update src/diffusers/models/attention.py Co-authored-by:Pedro Cuenca <pedro@huggingface.co>
-
- 21 Nov, 2022 1 commit
-
-
Birch-san authored
perf: prefer batched matmuls for attention. added fast-path to Decoder when num_heads=1
-
- 14 Nov, 2022 1 commit
-
-
Lime-Cakes authored
Older versions of xformers require query, key, value to be contiguous, this calls .contiguous() on q/k/v before passing to xformers.
-
- 08 Nov, 2022 1 commit
-
-
Suraj Patil authored
handle dtype xformers
-
- 03 Nov, 2022 1 commit
-
-
Will Berman authored
* Changes for VQ-diffusion VQVAE Add specify dimension of embeddings to VQModel: `VQModel` will by default set the dimension of embeddings to the number of latent channels. The VQ-diffusion VQVAE has a smaller embedding dimension, 128, than number of latent channels, 256. Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down unet block helpers. VQ-diffusion's VQVAE uses those two block types. * Changes for VQ-diffusion transformer Modify attention.py so SpatialTransformer can be used for VQ-diffusion's transformer. SpatialTransformer: - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous. - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs - modified forward pass to take optional timestep embeddings ImagePositionalEmbeddings: - added to provide positional embeddings to discrete inputs for latent pixels BasicTransformerBlock: - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings - modified forward pass to take optional timestep embeddings CrossAttention: - now may optionally take a bias parameter for its query, key, and value linear layers FeedForward: - Internal layers are now configurable ApproximateGELU: - Activation function in VQ-diffusion's feedforward layer AdaLayerNorm: - Norm layer modified to incorporate timestep embeddings * Add VQ-diffusion scheduler * Add VQ-diffusion pipeline * Add VQ-diffusion convert script to diffusers * Add VQ-diffusion dummy objects * Add VQ-diffusion markdown docs * Add VQ-diffusion tests * some renaming * some fixes * more renaming * correct * fix typo * correct weights * finalize * fix tests * Apply suggestions from code review Co-authored-by:
Anton Lozhkov <aglozhkov@gmail.com> * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * finish * finish * up Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Anton Lozhkov <aglozhkov@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 02 Nov, 2022 2 commits
-
-
Omiita authored
Fix a small typo fix a typo in `models/attention.py`. weight -> width
-
MatthieuTPHR authored
* 2x speedup using memory efficient attention * remove einops dependency * Swap K, M in op instantiation * Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter * make xformers a soft dependency * remove one-liner functions * change one letter variable to appropriate names * Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method * Add memory efficient attention toggle to img2img and inpaint pipelines * Clearer management of xformers' availability * update optimizations markdown to add info about memory efficient attention * add benchmarks for TITAN RTX * More detailed explanation of how the mem eff benchmark were ran * Removing autocast from optimization markdown * import_utils: import torch only if is available Co-authored-by:Nouamane Tazi <nouamane98@gmail.com>
-
- 31 Oct, 2022 1 commit
-
-
Patrick von Platen authored
* Remove nn sequential * up
-
- 29 Oct, 2022 1 commit
-
-
Pedro Cuenca authored
* Docs: refer to pre-RC version of PyTorch 1.13.0. * Remove temporary workaround for unavailable op. * Update comment to make it less ambiguous. * Remove use of contiguous in mps. It appears to not longer be necessary. * Special case: use einsum for much better performance in mps * Update mps docs. * MPS: make pipeline work in half precision.
-
- 25 Oct, 2022 1 commit
-
-
Pedro Cuenca authored
* Docs: refer to pre-RC version of PyTorch 1.13.0. * Remove temporary workaround for unavailable op. * Update comment to make it less ambiguous. * Remove use of contiguous in mps. It appears to not longer be necessary. * Special case: use einsum for much better performance in mps * Update mps docs. * Minor doc update. * Accept suggestion Co-authored-by:
Anton Lozhkov <anton@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
- 12 Oct, 2022 1 commit
-
-
Nathan Lambert authored
* add or fix license formatting * fix quality
-
- 30 Sep, 2022 2 commits
-
-
Nouamane Tazi authored
* revert using baddbmm in attention - to fix `test_stable_diffusion_memory_chunking` test * styling
-
Nouamane Tazi authored
* initial commit * make UNet stream capturable * try to fix noise_pred value * remove cuda graph and keep NB * non blocking unet with PNDMScheduler * make timesteps np arrays for pndm scheduler because lists don't get formatted to tensors in `self.set_format` * make max async in pndm * use channel last format in unet * avoid moving timesteps device in each unet call * avoid memcpy op in `get_timestep_embedding` * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained` * update TODO * replace `channels_last` kwarg with `memory_format` for more generality * revert the channels_last changes to leave it for another PR * remove non_blocking when moving input ids to device * remove blocking from all .to() operations at beginning of pipeline * fix merging * fix merging * model can run in other precisions without autocast * attn refactoring * Revert "attn refactoring" This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb. * remove restriction to run conv_norm in fp32 * use `baddbmm` instead of `matmul`for better in attention for better perf * removing all reshapes to test perf * Revert "removing all reshapes to test perf" This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd. * add shapes comments * hardcore whats needed for jitting * Revert "hardcore whats needed for jitting" This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a. * Revert "remove restriction to run conv_norm in fp32" This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9. * revert using baddmm in attention's forward * cleanup comment * remove restriction to run conv_norm in fp32. no quality loss was noticed This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213. * add more optimizations techniques to docs * Revert "add shapes comments" This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4. * apply suggestions * make quality * apply suggestions * styling * `scheduler.timesteps` are now arrays so we dont need .to() * remove useless .type() * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms` * move scheduler timestamps to correct device if tensors * add device to `set_timesteps` in LMSD scheduler * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it * quick fix * styling * remove kwargs from schedulers `set_timesteps` * revert to using max in K-LMS inpaint pipeline test * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it" This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899. * move timesteps to correct device before loop in SD pipeline * apply previous fix to other SD pipelines * UNet now accepts tensor timesteps even on wrong device, to avoid errors - it shouldnt affect performance if timesteps are alrdy on correct device - it does slow down performance if they're on the wrong device * fix pipeline when timesteps are arrays with strides
-
- 27 Sep, 2022 1 commit
-
-
Yih-Dar authored
* Fix SpatialTransformer * Fix SpatialTransformer Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 19 Sep, 2022 3 commits
-
-
Yih-Dar authored
* Fix CrossAttention._sliced_attention Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
ydshieh authored
-
ydshieh authored
-
- 15 Sep, 2022 1 commit
-
-
Suraj Patil authored
* pass norm_num_groups to unet blocs and attention * fix UNet2DConditionModel * add norm_num_groups arg in vae * add tests * remove comment * Apply suggestions from code review
-
- 14 Sep, 2022 1 commit
-
-
Suraj Patil authored
* add different method for sliced attention * Update src/diffusers/models/attention.py * Apply suggestions from code review * Update src/diffusers/models/attention.py Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 09 Sep, 2022 2 commits
-
-
Partho authored
* renamed variable names q -> query k -> key v -> value b -> batch c -> channel h -> height w -> weight * rename variable names missed some in the initial commit * renamed more variable names As per code review suggestions, renamed x -> hidden_states and x_in -> residual * fixed minor typo
-
Suraj Patil authored
* use torch.matmul instead of einsum * fix softmax
-