1. 25 Jul, 2023 1 commit
  2. 20 Jul, 2023 1 commit
  3. 17 Jul, 2023 1 commit
    • Will Berman's avatar
      t2i pipeline (#3932) · a0597f33
      Will Berman authored
      
      
      * Quick implementation of t2i-adapter
      
      Load adapter module with from_pretrained
      
      Prototyping generalized adapter framework
      
      Writeup doc string for sideload framework(WIP) + some minor update on implementation
      
      Update adapter models
      
      Remove old adapter optional args in UNet
      
      Add StableDiffusionAdapterPipeline unit test
      
      Handle cpu offload in StableDiffusionAdapterPipeline
      
      Auto correct coding style
      
      Update model repo name to "RzZ/sd-v1-4-adapter-pipeline"
      
      Refactor MultiAdapter to better compatible with config system
      
      Export MultiAdapter
      
      Create pipeline document template from controlnet
      
      Create dummy objects
      
      Supproting new AdapterLight model
      
      Fix StableDiffusionAdapterPipeline common pipeline test
      
      [WIP] Update adapter pipeline document
      
      Handle num_inference_steps in StableDiffusionAdapterPipeline
      
      Update definition of Adapter "channels_in"
      
      Update documents
      
      Apply code style
      
      Fix doc typo and merge error
      
      Update doc string and example
      
      Quality of life improvement
      
      Remove redundant code and file from prototyping
      
      Remove unused pageage
      
      Remove comments
      
      Fix title
      
      Fix typo
      
      Add conditioning scale arg
      
      Bring back old implmentation
      
      Offload sideload
      
      Add supply info on document
      
      Update src/diffusers/models/adapter.py
      Co-authored-by: default avatarWill Berman <wlbberman@gmail.com>
      
      Update MultiAdapter constructor
      
      Swap out custom checkpoint and update pipeline constructor
      
      Update docment
      
      Apply suggestions from code review
      Co-authored-by: default avatarWill Berman <wlbberman@gmail.com>
      
      Correcting style
      
      Following single-file policy
      
      Update auto size in image preprocess func
      
      Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_adapter.py
      Co-authored-by: default avatarWill Berman <wlbberman@gmail.com>
      
      fix copies
      
      Update adapter pipeline behavior
      
      Add adapter_conditioning_scale doc string
      
      Add the missing doc string
      
      Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      Fix few bugs from suggestion
      
      Handle L-mode PIL image as control image
      
      Rename to differentiate adapter resblock
      
      Update src/diffusers/models/adapter.py
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      Fix typo
      
      Update adapter parameter name
      
      Update test case and code style
      
      Fix copies
      
      Fix typo
      
      Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_adapter.py
      Co-authored-by: default avatarWill Berman <wlbberman@gmail.com>
      
      Update Adapter class name
      
      Add checkpoint converting script
      
      Fix style
      
      Fix-copies
      
      Remove dev script
      
      Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      Updates for parameter rename
      
      Fix convert_adapter
      
      remove main
      
      fix diff
      
      more
      
      refactoring
      
      more
      
      more
      
      small fixes
      
      refactor
      
      tests
      
      more slow tests
      
      more tests
      
      Update docs/source/en/api/pipelines/overview.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      add community contributor to docs
      
      Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      fix
      
      remove from_adapters
      
      license
      
      paper link
      
      docs
      
      more url fixes
      
      more docs
      
      fix
      
      fixes
      
      fix
      
      fix
      
      * fix sample inplace add
      
      * additional_kwargs -> additional_residuals
      
      * move t2i adapter pipeline to own module
      
      * preprocess -> _preprocess_adapter_image
      
      * add TencentArc to license
      
      * fix example code links
      
      * add image converter and fix example doc string
      
      * fix links
      
      * clearer additional residual application
      
      ---------
      Co-authored-by: default avatarHimariO <dsfhe49854@gmail.com>
      a0597f33
  4. 05 Jul, 2023 1 commit
    • dg845's avatar
      Add Consistency Models Pipeline (#3492) · aed7499a
      dg845 authored
      
      
      * initial commit
      
      * Improve consistency models sampling implementation.
      
      * Add CMStochasticIterativeScheduler, which implements the multi-step sampler (stochastic_iterative_sampler) in the original code, and make further improvements to sampling.
      
      * Add Unet blocks for consistency models
      
      * Add conversion script for Unet
      
      * Fix bug in new unet blocks
      
      * Fix attention weight loading
      
      * Make design improvements to ConsistencyModelPipeline and CMStochasticIterativeScheduler and add initial version of tests.
      
      * make style
      
      * Make small random test UNet class conditional and set resnet_time_scale_shift to 'scale_shift' to better match consistency model checkpoints.
      
      * Add support for converting a test UNet and non-class-conditional UNets to the consistency models conversion script.
      
      * make style
      
      * Change num_class_embeds to 1000 to better match the original consistency models implementation.
      
      * Add support for distillation in pipeline_consistency_models.py.
      
      * Improve consistency model tests:
      	- Get small testing checkpoints from hub
      	- Modify tests to take into account "distillation" parameter of ConsistencyModelPipeline
      	- Add onestep, multistep tests for distillation and distillation + class conditional
      	- Add expected image slices for onestep tests
      
      * make style
      
      * Improve ConsistencyModelPipeline:
      	- Add initial support for class-conditional generation
      	- Fix initial sigma for onestep generation
      	- Fix some sigma shape issues
      
      * make style
      
      * Improve ConsistencyModelPipeline:
      	- add latents __call__ argument and prepare_latents method
      	- add check_inputs method
      	- add initial docstrings for ConsistencyModelPipeline.__call__
      
      * make style
      
      * Fix bug when randomly generating class labels for class-conditional generation.
      
      * Switch CMStochasticIterativeScheduler to configuring a sigma schedule and make related changes to the pipeline and tests.
      
      * Remove some unused code and make style.
      
      * Fix small bug in CMStochasticIterativeScheduler.
      
      * Add expected slices for multistep sampling tests and make them pass.
      
      * Work on consistency model fast tests:
      	- in pipeline, call self.scheduler.scale_model_input before denoising
      	- get expected slices for Euler and Heun scheduler tests
      	- make Euler test pass
      	- mark Heun test as expected fail because it doesn't support prediction_type "sample" yet
      	- remove DPM and Euler Ancestral tests because they don't support use_karras_sigmas
      
      * make style
      
      * Refactor conversion script to make it easier to add more model architectures to convert in the future.
      
      * Work on ConsistencyModelPipeline tests:
      	- Fix device bug when handling class labels in ConsistencyModelPipeline.__call__
      	- Add slow tests for onestep and multistep sampling and make them pass
      	- Refactor fast tests
      	- Refactor ConsistencyModelPipeline.__init__
      
      * make style
      
      * Remove the add_noise and add_noise_to_input methods from CMStochasticIterativeScheduler for now.
      
      * Run python utils/check_copies.py --fix_and_overwrite
      python utils/check_dummies.py --fix_and_overwrite to make dummy objects for new pipeline and scheduler.
      
      * Make fast tests from PipelineTesterMixin pass.
      
      * make style
      
      * Refactor consistency models pipeline and scheduler:
      	- Remove support for Karras schedulers (only support CMStochasticIterativeScheduler)
      	- Move sigma manipulation, input scaling, denoising from pipeline to scheduler
      	- Make corresponding changes to tests and ensure they pass
      
      * make style
      
      * Add docstrings and further refactor pipeline and scheduler.
      
      * make style
      
      * Add initial version of the consistency models documentation.
      
      * Refactor custom timesteps logic following DDPMScheduler/IFPipeline and temporarily add torch 2.0 SDPA kernel selection logic for debugging.
      
      * make style
      
      * Convert current slow tests to use fp16 and flash attention.
      
      * make style
      
      * Add slow tests for normal attention on cuda device.
      
      * make style
      
      * Fix attention weights loading
      
      * Update consistency model fast tests for new test checkpoints with attention fix.
      
      * make style
      
      * apply suggestions
      
      * Add add_noise method to CMStochasticIterativeScheduler (copied from EulerDiscreteScheduler).
      
      * Conversion script now outputs pipeline instead of UNet and add support for LSUN-256 models and different schedulers.
      
      * When both timesteps and num_inference_steps are supplied, raise warning instead of error (timesteps take precedence).
      
      * make style
      
      * Add remaining diffusers model checkpoints for models in the original consistency model release and update usage example.
      
      * apply suggestions from review
      
      * make style
      
      * fix attention naming
      
      * Add tests for CMStochasticIterativeScheduler.
      
      * make style
      
      * Make CMStochasticIterativeScheduler tests pass.
      
      * make style
      
      * Override test_step_shape in CMStochasticIterativeSchedulerTest instead of modifying it in SchedulerCommonTest.
      
      * make style
      
      * rename some models
      
      * Improve API
      
      * rename some models
      
      * Remove duplicated block
      
      * Add docstring and make torch compile work
      
      * More fixes
      
      * Fixes
      
      * Apply suggestions from code review
      
      * Apply suggestions from code review
      
      * add more docstring
      
      * update consistency conversion script
      
      ---------
      Co-authored-by: default avatarayushmangal <ayushmangal@microsoft.com>
      Co-authored-by: default avatarAyush Mangal <43698245+ayushtues@users.noreply.github.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      aed7499a
  5. 20 Jun, 2023 1 commit
  6. 16 May, 2023 1 commit
  7. 23 Mar, 2023 1 commit
    • Kashif Rasul's avatar
      Music Spectrogram diffusion pipeline (#1044) · 2ef9bdd7
      Kashif Rasul authored
      
      
      * initial TokenEncoder and ContinuousEncoder
      
      * initial modules
      
      * added ContinuousContextTransformer
      
      * fix copy paste error
      
      * use numpy for get_sequence_length
      
      * initial terminal relative positional encodings
      
      * fix weights keys
      
      * fix assert
      
      * cross attend style: concat encodings
      
      * make style
      
      * concat once
      
      * fix formatting
      
      * Initial SpectrogramPipeline
      
      * fix input_tokens
      
      * make style
      
      * added mel output
      
      * ignore weights for config
      
      * move mel to numpy
      
      * import pipeline
      
      * fix class names and import
      
      * moved models to models folder
      
      * import ContinuousContextTransformer and SpectrogramDiffusionPipeline
      
      * initial spec diffusion converstion script
      
      * renamed config to t5config
      
      * added weight loading
      
      * use arguments instead of t5config
      
      * broadcast noise time to batch dim
      
      * fix call
      
      * added scale_to_features
      
      * fix weights
      
      * transpose laynorm weight
      
      * scale is a vector
      
      * scale the query outputs
      
      * added comment
      
      * undo scaling
      
      * undo depth_scaling
      
      * inital get_extended_attention_mask
      
      * attention_mask is none in self-attention
      
      * cleanup
      
      * manually invert attention
      
      * nn.linear need bias=False
      
      * added T5LayerFFCond
      
      * remove to fix conflict
      
      * make style and dummy
      
      * remove unsed variables
      
      * remove predict_epsilon
      
      * Move accelerate to a soft-dependency (#1134)
      
      * finish
      
      * finish
      
      * Update src/diffusers/modeling_utils.py
      
      * Update src/diffusers/pipeline_utils.py
      Co-authored-by: default avatarAnton Lozhkov <anton@huggingface.co>
      
      * more fixes
      
      * fix
      Co-authored-by: default avatarAnton Lozhkov <anton@huggingface.co>
      
      * fix order
      
      * added initial midi to note token data pipeline
      
      * added int to int tokenizer
      
      * remove duplicate
      
      * added logic for segments
      
      * add melgan to pipeline
      
      * move autoregressive gen into pipeline
      
      * added note_representation_processor_chain
      
      * fix dtypes
      
      * remove immutabledict req
      
      * initial doc
      
      * use np.where
      
      * require note_seq
      
      * fix typo
      
      * update dependency
      
      * added note-seq to test
      
      * added is_note_seq_available
      
      * fix import
      
      * added toc
      
      * added example usage
      
      * undo for now
      
      * moved docs
      
      * fix merge
      
      * fix imports
      
      * predict first segment
      
      * avoid un-needed copy to and from cpu
      
      * make style
      
      * Copyright
      
      * fix style
      
      * add test and fix inference steps
      
      * remove bogus files
      
      * reorder models
      
      * up
      
      * remove transformers dependency
      
      * make work with diffusers cross attention
      
      * clean more
      
      * remove @
      
      * improve further
      
      * up
      
      * uP
      
      * Apply suggestions from code review
      
      * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
      
      * loop over all tokens
      
      * make style
      
      * Added a section on the model
      
      * fix formatting
      
      * grammer
      
      * formatting
      
      * make fix-copies
      
      * Update src/diffusers/pipelines/__init__.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * added callback ad optional ionnx
      
      * do not squeeze batch dim
      
      * clean up more
      
      * upload
      
      * convert jax to nnumpy
      
      * make style
      
      * fix warning
      
      * make fix-copies
      
      * fix warning
      
      * add initial fast tests
      
      * add initial pipeline_params
      
      * eval mode due to dropout
      
      * skip batch tests as pipeline runs on a single file
      
      * make style
      
      * fix relative path
      
      * fix doc tests
      
      * Update src/diffusers/models/t5_film_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/t5_film_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/spectrogram_diffusion.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add MidiProcessor
      
      * format
      
      * fix org
      
      * Apply suggestions from code review
      
      * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py
      
      * make style
      
      * pin protobuf to <4
      
      * fix formatting
      
      * white space
      
      * tensorboard needs protobuf
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <anton@huggingface.co>
      2ef9bdd7
  8. 22 Mar, 2023 1 commit
    • Patrick von Platen's avatar
      [MS Text To Video] Add first text to video (#2738) · ca1a2229
      Patrick von Platen authored
      
      
      * [MS Text To Video} Add first text to video
      
      * upload
      
      * make first model example
      
      * match unet3d params
      
      * make sure weights are correcctly converted
      
      * improve
      
      * forward pass works, but diff result
      
      * make forward work
      
      * fix more
      
      * finish
      
      * refactor video output class.
      
      * feat: add support for a video export utility.
      
      * fix: opencv availability check.
      
      * run make fix-copies.
      
      * add: docs for the model components.
      
      * add: standalone pipeline doc.
      
      * edit docstring of the pipeline.
      
      * add: right path to TransformerTempModel
      
      * add: first set of tests.
      
      * complete fast tests for text to video.
      
      * fix bug
      
      * up
      
      * three fast tests failing.
      
      * add: note on slow tests
      
      * make work with all schedulers
      
      * apply styling.
      
      * add slow tests
      
      * change file name
      
      * update
      
      * more correction
      
      * more fixes
      
      * finish
      
      * up
      
      * Apply suggestions from code review
      
      * up
      
      * finish
      
      * make copies
      
      * fix pipeline tests
      
      * fix more tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * apply suggestions
      
      * up
      
      * revert
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ca1a2229
  9. 02 Mar, 2023 1 commit
    • Takuma Mori's avatar
      Add a ControlNet model & pipeline (#2407) · 8dfff7c0
      Takuma Mori authored
      
      
      * add scaffold
      - copied convert_controlnet_to_diffusers.py from
      convert_original_stable_diffusion_to_diffusers.py
      
      * Add support to load ControlNet (WIP)
      - this makes Missking Key error on ControlNetModel
      
      * Update to convert ControlNet without error msg
      - init impl for StableDiffusionControlNetPipeline
      - init impl for ControlNetModel
      
      * cleanup of commented out
      
      * split create_controlnet_diffusers_config()
      from create_unet_diffusers_config()
      
      - add config: hint_channels
      
      * Add input_hint_block, input_zero_conv and
      middle_block_out
      - this makes missing key error on loading model
      
      * add unet_2d_blocks_controlnet.py
      - copied from unet_2d_blocks.py as impl CrossAttnDownBlock2D,DownBlock2D
      - this makes missing key error on loading model
      
      * Add loading for input_hint_block, zero_convs
      and middle_block_out
      
      - this makes no error message on model loading
      
      * Copy from UNet2DConditionalModel except __init__
      
      * Add ultra primitive test for ControlNetModel
      inference
      
      * Support ControlNetModel inference
      - without exceptions
      
      * copy forward() from UNet2DConditionModel
      
      * Impl ControlledUNet2DConditionModel inference
      - test_controlled_unet_inference passed
      
      * Frozen weight & biases for training
      
      * Minimized version of ControlNet/ControlledUnet
      - test_modules_controllnet.py passed
      
      * make style
      
      * Add support model loading for minimized ver
      
      * Remove all previous version files
      
      * from_pretrained and inference test passed
      
      * copied from pipeline_stable_diffusion.py
      except `__init__()`
      
      * Impl pipeline, pixel match test (almost) passed.
      
      * make style
      
      * make fix-copies
      
      * Fix to add import ControlNet blocks
      for `make fix-copies`
      
      * Remove einops dependency
      
      * Support  np.ndarray, PIL.Image for controlnet_hint
      
      * set default config file as lllyasviel's
      
      * Add support grayscale (hw) numpy array
      
      * Add and update docstrings
      
      * add control_net.mdx
      
      * add control_net.mdx to toctree
      
      * Update copyright year
      
      * Fix to add PIL.Image RGB->BGR conversion
      - thanks @Mystfit
      
      * make fix-copies
      
      * add basic fast test for controlnet
      
      * add slow test for controlnet/unet
      
      * Ignore down/up_block len check on ControlNet
      
      * add a copy from test_stable_diffusion.py
      
      * Accept controlnet_hint is None
      
      * merge pipeline_stable_diffusion.py diff
      
      * Update class name to SDControlNetPipeline
      
      * make style
      
      * Baseline fast test almost passed (w long desc)
      
      * still needs investigate.
      
      Following didn't passed descriped in TODO comment:
      - test_stable_diffusion_long_prompt
      - test_stable_diffusion_no_safety_checker
      
      Following didn't passed same as stable_diffusion_pipeline:
      - test_attention_slicing_forward_pass
      - test_inference_batch_single_identical
      - test_xformers_attention_forwardGenerator_pass
      these seems come from calc accuracy.
      
      * Add note comment related vae_scale_factor
      
      * add test_stable_diffusion_controlnet_ddim
      
      * add assertion for vae_scale_factor != 8
      
      * slow test of pipeline almost passed
      Failed: test_stable_diffusion_pipeline_with_model_offloading
      - ImportError: `enable_model_offload` requires `accelerate v0.17.0` or higher
      
      but currently latest version == 0.16.0
      
      * test_stable_diffusion_long_prompt passed
      
      * test_stable_diffusion_no_safety_checker passed
      
      - due to its model size, move to slow test
      
      * remove PoC test files
      
      * fix num_of_image, prompt length issue add add test
      
      * add support List[PIL.Image] for controlnet_hint
      
      * wip
      
      * all slow test passed
      
      * make style
      
      * update for slow test
      
      * RGB(PIL)->BGR(ctrlnet) conversion
      
      * fixes
      
      * remove manual num_images_per_prompt test
      
      * add document
      
      * add `image` argument docstring
      
      * make style
      
      * Add line to correct conversion
      
      * add controlnet_conditioning_scale (aka control_scales
      strength)
      
      * rgb channel ordering by default
      
      * image batching logic
      
      * Add control image descriptions for each checkpoint
      
      * Only save controlnet model in conversion script
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py
      
      typo
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * add gerated image example
      
      * a depth mask -> a depth map
      
      * rename control_net.mdx to controlnet.mdx
      
      * fix toc title
      
      * add ControlNet abstruct and link
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py
      Co-authored-by: default avatardqueue <dbyqin@gmail.com>
      
      * remove controlnet constructor arguments re: @patrickvonplaten
      
      * [integration tests] test canny
      
      * test_canny fixes
      
      * [integration tests] test_depth
      
      * [integration tests] test_hed
      
      * [integration tests] test_mlsd
      
      * add channel order config to controlnet
      
      * [integration tests] test normal
      
      * [integration tests] test_openpose test_scribble
      
      * change height and width to default to conditioning image
      
      * [integration tests] test seg
      
      * style
      
      * test_depth fix
      
      * [integration tests] size fixes
      
      * [integration tests] cpu offloading
      
      * style
      
      * generalize controlnet embedding
      
      * fix conversion script
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Style adapted to the documentation of pix2pix
      
      * merge main by hand
      
      * style
      
      * [docs] controlling generation doc nits
      
      * correct some things
      
      * add: controlnetmodel to autodoc.
      
      * finish docs
      
      * finish
      
      * finish 2
      
      * correct images
      
      * finish controlnet
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * uP
      
      * upload model
      
      * up
      
      * up
      
      ---------
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatardqueue <dbyqin@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      8dfff7c0
  10. 17 Feb, 2023 1 commit
  11. 16 Feb, 2023 1 commit
  12. 07 Feb, 2023 1 commit
  13. 17 Jan, 2023 1 commit
    • Kashif Rasul's avatar
      DiT Pipeline (#1806) · 37d113cc
      Kashif Rasul authored
      
      
      * added dit model
      
      * import
      
      * initial pipeline
      
      * initial convert script
      
      * initial pipeline
      
      * make style
      
      * raise valueerror
      
      * single function
      
      * rename classes
      
      * use DDIMScheduler
      
      * timesteps embedder
      
      * samples to cpu
      
      * fix var names
      
      * fix numpy type
      
      * use timesteps class for proj
      
      * fix typo
      
      * fix arg name
      
      * flip_sin_to_cos and better var names
      
      * fix C shape cal
      
      * make style
      
      * remove unused imports
      
      * cleanup
      
      * add back patch_size
      
      * initial dit doc
      
      * typo
      
      * Update docs/source/api/pipelines/dit.mdx
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * added copyright license headers
      
      * added example usage and toc
      
      * fix variable names asserts
      
      * remove comment
      
      * added docs
      
      * fix typo
      
      * upstream changes
      
      * set proper device for drop_ids
      
      * added initial dit pipeline test
      
      * update docs
      
      * fix imports
      
      * make fix-copies
      
      * isort
      
      * fix imports
      
      * get rid of more magic numbers
      
      * fix code when guidance is off
      
      * remove block_kwargs
      
      * cleanup script
      
      * removed to_2tuple
      
      * use FeedForward class instead of another MLP
      
      * style
      
      * work on mergint DiTBlock with BasicTransformerBlock
      
      * added missing final_dropout and args to BasicTransformerBlock
      
      * use norm from block
      
      * fix arg
      
      * remove unused arg
      
      * fix call to class_embedder
      
      * use timesteps
      
      * make style
      
      * attn_output gets multiplied
      
      * removed commented code
      
      * use Transformer2D
      
      * use self.is_input_patches
      
      * fix flags
      
      * fixed conversion to use Transformer2DModel
      
      * fixes for pipeline
      
      * remove dit.py
      
      * fix timesteps device
      
      * use randn_tensor and fix fp16 inf.
      
      * timesteps_emb already the right dtype
      
      * fix dit test class
      
      * fix test and style
      
      * fix norm2 usage in vq-diffusion
      
      * added author names to pipeline and lmagenet labels link
      
      * fix tests
      
      * use norm_type as string
      
      * rename dit to transformer
      
      * fix name
      
      * fix test
      
      * set  norm_type = "layer" by default
      
      * fix tests
      
      * do not skip common tests
      
      * Update src/diffusers/models/attention.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * revert AdaLayerNorm API
      
      * fix norm_type name
      
      * make sure all components are in eval mode
      
      * revert norm2 API
      
      * compact
      
      * finish deprecation
      
      * add slow tests
      
      * remove @
      
      * refactor some stuff
      
      * upload
      
      * Update src/diffusers/pipelines/dit/pipeline_dit.py
      
      * finish more
      
      * finish docs
      
      * improve docs
      
      * finish docs
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      37d113cc
  14. 04 Jan, 2023 1 commit
  15. 30 Dec, 2022 1 commit
  16. 18 Dec, 2022 1 commit
    • Will Berman's avatar
      kakaobrain unCLIP (#1428) · 2dcf64b7
      Will Berman authored
      
      
      * [wip] attention block updates
      
      * [wip] unCLIP unet decoder and super res
      
      * [wip] unCLIP prior transformer
      
      * [wip] scheduler changes
      
      * [wip] text proj utility class
      
      * [wip] UnCLIPPipeline
      
      * [wip] kakaobrain unCLIP convert script
      
      * [unCLIP pipeline] fixes re: @patrickvonplaten
      
      remove callbacks
      
      move denoising loops into call function
      
      * UNCLIPScheduler re: @patrickvonplaten
      
      Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified
      DDPM scheduler with changes to support karlo
      
      * mask -> attention_mask re: @patrickvonplaten
      
      * [DDPMScheduler] remove leftover change
      
      * [docs] PriorTransformer
      
      * [docs] UNet2DConditionModel and UNet2DModel
      
      * [nit] UNCLIPScheduler -> UnCLIPScheduler
      
      matches existing unclip naming better
      
      * [docs] SchedulingUnCLIP
      
      * [docs] UnCLIPTextProjModel
      
      * refactor
      
      * finish licenses
      
      * rename all to attention_mask and prep in models
      
      * more renaming
      
      * don't expose unused configs
      
      * final renaming fixes
      
      * remove x attn mask when not necessary
      
      * configure kakao script to use new class embedding config
      
      * fix copies
      
      * [tests] UnCLIPScheduler
      
      * finish x attn
      
      * finish
      
      * remove more
      
      * rename condition blocks
      
      * clean more
      
      * Apply suggestions from code review
      
      * up
      
      * fix
      
      * [tests] UnCLIPPipelineFastTests
      
      * remove unused imports
      
      * [tests] UnCLIPPipelineIntegrationTests
      
      * correct
      
      * make style
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      2dcf64b7
  17. 08 Dec, 2022 1 commit
  18. 07 Dec, 2022 1 commit
  19. 05 Dec, 2022 1 commit
    • Robert Dargavel Smith's avatar
      add AudioDiffusionPipeline and LatentAudioDiffusionPipeline #1334 (#1426) · 48d0123f
      Robert Dargavel Smith authored
      
      
      * add AudioDiffusionPipeline and LatentAudioDiffusionPipeline
      
      * add docs to toc
      
      * fix tests
      
      * fix tests
      
      * fix tests
      
      * fix tests
      
      * fix tests
      
      * Update pr_tests.yml
      
      Fix tests
      
      * parent 499ff34b3edc3e0c506313ab48f21514d8f58b09
      author teticio <teticio@gmail.com> 1668765652 +0000
      committer teticio <teticio@gmail.com> 1669041721 +0000
      
      parent 499ff34b3edc3e0c506313ab48f21514d8f58b09
      author teticio <teticio@gmail.com> 1668765652 +0000
      committer teticio <teticio@gmail.com> 1669041704 +0000
      
      add colab notebook
      
      [Flax] Fix loading scheduler from subfolder (#1319)
      
      [FLAX] Fix loading scheduler from subfolder
      
      Fix/Enable all schedulers for in-painting (#1331)
      
      * inpaint fix k lms
      
      * onnox as well
      
      * up
      
      Correct path to schedlure (#1322)
      
      * [Examples] Correct path
      
      * uP
      
      Avoid nested fix-copies (#1332)
      
      * Avoid nested `# Copied from` statements during `make fix-copies`
      
      * style
      
      Fix img2img speed with LMS-Discrete Scheduler (#896)
      
      Casting `self.sigmas` into a different dtype (the one of original_samples) is not advisable. In my img2img pipeline this leads to a long running time in the  `integrate.quad` call later on- by long I mean more than 10x slower.
      Co-authored-by: default avatarAnton Lozhkov <anton@huggingface.co>
      
      Fix the order of casts for onnx inpainting (#1338)
      
      Legacy Inpainting Pipeline for Onnx Models (#1237)
      
      * Add legacy inpainting pipeline compatibility for onnx
      
      * remove commented out line
      
      * Add onnx legacy inpainting test
      
      * Fix slow decorators
      
      * pep8 styling
      
      * isort styling
      
      * dummy object
      
      * ordering consistency
      
      * style
      
      * docstring styles
      
      * Refactor common prompt encoding pattern
      
      * Update tests to permanent repository home
      
      * support all available schedulers until ONNX IO binding is available
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * updated styling from PR suggested feedback
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      Jax infer support negative prompt (#1337)
      
      * support negative prompts in sd jax pipeline
      
      * pass batched neg_prompt
      
      * only encode when negative prompt is None
      Co-authored-by: default avatarJuan Acevedo <jfacevedo@google.com>
      
      Update README.md: Minor change to Imagic code snippet, missing dir error (#1347)
      
      Minor change to Imagic Readme
      
      Missing dir causes an error when running the example code.
      
      make style
      
      change the sample model (#1352)
      
      * Update alt_diffusion.mdx
      
      * Update alt_diffusion.mdx
      
      Add bit diffusion [WIP] (#971)
      
      * Create bit_diffusion.py
      
      Bit diffusion based on the paper, arXiv:2208.04202, Chen2022AnalogBG
      
      * adding bit diffusion to new branch
      
      ran tests
      
      * tests
      
      * tests
      
      * tests
      
      * tests
      
      * removed test folders + added to README
      
      * Update README.md
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * move Mel to module in pipeline construction, make librosa optional
      
      * fix imports
      
      * fix copy & paste error in comment
      
      * fix style
      
      * add missing register_to_config
      
      * fix class docstrings
      
      * fix class docstrings
      
      * tweak docstrings
      
      * tweak docstrings
      
      * update slow test
      
      * put trailing commas back
      
      * respect alphabetical order
      
      * remove LatentAudioDiffusion, make vqvae optional
      
      * move Mel from models back to pipelines :-)
      
      * allow loading of pretrained audiodiffusion models
      
      * fix tests
      
      * fix dummies
      
      * remove reference to latent_audio_diffusion in docs
      
      * unused import
      
      * inherit from SchedulerMixin to make loadable
      
      * Apply suggestions from code review
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      48d0123f
  20. 02 Dec, 2022 1 commit
  21. 28 Nov, 2022 1 commit
    • Patrick von Platen's avatar
      Add 2nd order heun scheduler (#1336) · 4c54519e
      Patrick von Platen authored
      * Add heun
      
      * Finish first version of heun
      
      * remove bogus
      
      * finish
      
      * finish
      
      * improve
      
      * up
      
      * up
      
      * fix more
      
      * change progress bar
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
      
      * finish
      
      * up
      
      * up
      
      * up
      4c54519e
  22. 09 Nov, 2022 1 commit
  23. 06 Nov, 2022 1 commit
    • Cheng Lu's avatar
      Add multistep DPM-Solver discrete scheduler (#1132) · b4a1ed85
      Cheng Lu authored
      
      
      * add dpmsolver discrete pytorch scheduler
      
      * fix some typos in dpm-solver pytorch
      
      * add dpm-solver pytorch in stable-diffusion pipeline
      
      * add jax/flax version dpm-solver
      
      * change code style
      
      * change code style
      
      * add docs
      
      * add `add_noise` method for dpmsolver
      
      * add pytorch unit test for dpmsolver
      
      * add dummy object for pytorch dpmsolver
      
      * Update src/diffusers/schedulers/scheduling_dpmsolver_discrete.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * Update tests/test_config.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * Update tests/test_config.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * resolve the code comments
      
      * rename the file
      
      * change class name
      
      * fix code style
      
      * add auto docs for dpmsolver multistep
      
      * add more explanations for the stabilizing trick (for steps < 15)
      
      * delete the dummy file
      
      * change the API name of predict_epsilon, algorithm_type and solver_type
      
      * add compatible lists
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      b4a1ed85
  24. 04 Nov, 2022 1 commit
  25. 03 Nov, 2022 2 commits
    • Will Berman's avatar
      VQ-diffusion (#658) · ef2ea33c
      Will Berman authored
      
      
      * Changes for VQ-diffusion VQVAE
      
      Add specify dimension of embeddings to VQModel:
      `VQModel` will by default set the dimension of embeddings to the number
      of latent channels. The VQ-diffusion VQVAE has a smaller
      embedding dimension, 128, than number of latent channels, 256.
      
      Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
      unet block helpers. VQ-diffusion's VQVAE uses those two block types.
      
      * Changes for VQ-diffusion transformer
      
      Modify attention.py so SpatialTransformer can be used for
      VQ-diffusion's transformer.
      
      SpatialTransformer:
      - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
      - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
      - modified forward pass to take optional timestep embeddings
      
      ImagePositionalEmbeddings:
      - added to provide positional embeddings to discrete inputs for latent pixels
      
      BasicTransformerBlock:
      - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
      - modified forward pass to take optional timestep embeddings
      
      CrossAttention:
      - now may optionally take a bias parameter for its query, key, and value linear layers
      
      FeedForward:
      - Internal layers are now configurable
      
      ApproximateGELU:
      - Activation function in VQ-diffusion's feedforward layer
      
      AdaLayerNorm:
      - Norm layer modified to incorporate timestep embeddings
      
      * Add VQ-diffusion scheduler
      
      * Add VQ-diffusion pipeline
      
      * Add VQ-diffusion convert script to diffusers
      
      * Add VQ-diffusion dummy objects
      
      * Add VQ-diffusion markdown docs
      
      * Add VQ-diffusion tests
      
      * some renaming
      
      * some fixes
      
      * more renaming
      
      * correct
      
      * fix typo
      
      * correct weights
      
      * finalize
      
      * fix tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * finish
      
      * finish
      
      * up
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ef2ea33c
    • Revist's avatar
      feat: add repaint (#974) · d38c8043
      Revist authored
      
      
      * feat: add repaint
      
      * fix: fix quality check with `make fix-copies`
      
      * fix: remove old unnecessary arg
      
      * chore: change default to DDPM (looks better in experiments)
      
      * ".to(device)" changed to "device="
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * make generator device-specific
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * make generator device-specific and change shape
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * fix: add preprocessing for image and mask
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * fix: update test
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Update src/diffusers/pipelines/repaint/pipeline_repaint.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Add docs and examples
      
      * Fix toctree
      Co-authored-by: default avatarfja <fja@zurich.ibm.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <anton@huggingface.co>
      d38c8043
  26. 31 Oct, 2022 1 commit
  27. 25 Oct, 2022 1 commit
  28. 12 Oct, 2022 1 commit
  29. 13 Sep, 2022 1 commit