1. 03 Dec, 2024 3 commits
  2. 28 Nov, 2024 1 commit
  3. 20 Nov, 2024 1 commit
  4. 05 Nov, 2024 1 commit
    • Aryan's avatar
      [core] Mochi T2V (#9769) · 3f329a42
      Aryan authored
      
      
      * update
      
      * udpate
      
      * update transformer
      
      * make style
      
      * fix
      
      * add conversion script
      
      * update
      
      * fix
      
      * update
      
      * fix
      
      * update
      
      * fixes
      
      * make style
      
      * update
      
      * update
      
      * update
      
      * init
      
      * update
      
      * update
      
      * add
      
      * up
      
      * up
      
      * up
      
      * update
      
      * mochi transformer
      
      * remove original implementation
      
      * make style
      
      * update inits
      
      * update conversion script
      
      * docs
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * fix docs
      
      * pipeline fixes
      
      * make style
      
      * invert sigmas in scheduler; fix pipeline
      
      * fix pipeline num_frames
      
      * flip proj and gate in swiglu
      
      * make style
      
      * fix
      
      * make style
      
      * fix tests
      
      * latent mean and std fix
      
      * update
      
      * cherry-pick 1069d210e1b9e84a366cdc7a13965626ea258178
      
      * remove additional sigma already handled by flow match scheduler
      
      * fix
      
      * remove hardcoded value
      
      * replace conv1x1 with linear
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * framewise decoding and conv_cache
      
      * make style
      
      * Apply suggestions from code review
      
      * mochi vae encoder changes
      
      * rebase correctly
      
      * Update scripts/convert_mochi_to_diffusers.py
      
      * fix tests
      
      * fixes
      
      * make style
      
      * update
      
      * make style
      
      * update
      
      * add framewise and tiled encoding
      
      * make style
      
      * make original vae implementation behaviour the default; note: framewise encoding does not work
      
      * remove framewise encoding implementation due to presence of attn layers
      
      * fight test 1
      
      * fight test 2
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avataryiyixuxu <yixu310@gmail.com>
      3f329a42
  5. 21 Oct, 2024 1 commit
  6. 15 Oct, 2024 3 commits
  7. 30 Sep, 2024 1 commit
  8. 25 Sep, 2024 2 commits
  9. 23 Sep, 2024 1 commit
  10. 11 Sep, 2024 1 commit
  11. 07 Aug, 2024 1 commit
  12. 01 Aug, 2024 1 commit
  13. 30 Jul, 2024 1 commit
    • Yoach Lacombe's avatar
      Stable Audio integration (#8716) · 69e72b1d
      Yoach Lacombe authored
      
      
      * WIP modeling code and pipeline
      
      * add custom attention processor + custom activation + add to init
      
      * correct ProjectionModel forward
      
      * add stable audio to __initèè
      
      * add autoencoder and update pipeline and modeling code
      
      * add half Rope
      
      * add partial rotary v2
      
      * add temporary modfis to scheduler
      
      * add EDM DPM Solver
      
      * remove TODOs
      
      * clean GLU
      
      * remove att.group_norm to attn processor
      
      * revert back src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
      
      * refactor GLU -> SwiGLU
      
      * remove redundant args
      
      * add channel multiples in autoencoder docstrings
      
      * changes in docsrtings and copyright headers
      
      * clean pipeline
      
      * further cleaning
      
      * remove peft and lora and fromoriginalmodel
      
      * Delete src/diffusers/pipelines/stable_audio/diffusers.code-workspace
      
      * make style
      
      * dummy models
      
      * fix copied from
      
      * add fast oobleck tests
      
      * add brownian tree
      
      * oobleck autoencoder slow tests
      
      * remove TODO
      
      * fast stable audio pipeline tests
      
      * add slow tests
      
      * make style
      
      * add first version of docs
      
      * wrap is_torchsde_available to the scheduler
      
      * fix slow test
      
      * test with input waveform
      
      * add input waveform
      
      * remove some todos
      
      * create stableaudio gaussian projection + make style
      
      * add pipeline to toctree
      
      * fix copied from
      
      * make quality
      
      * refactor timestep_features->time_proj
      
      * refactor joint_attention_kwargs->cross_attention_kwargs
      
      * remove forward_chunk
      
      * move StableAudioDitModel to transformers folder
      
      * correct convert + remove partial rotary embed
      
      * apply suggestions from yiyixuxu -> removing attn.kv_heads
      
      * remove temb
      
      * remove cross_attention_kwargs
      
      * further removal of cross_attention_kwargs
      
      * remove text encoder autocast to fp16
      
      * continue removing autocast
      
      * make style
      
      * refactor how text and audio are embedded
      
      * add paper
      
      * update example code
      
      * make style
      
      * unify projection model forward + fix device placement
      
      * make style
      
      * remove fuse qkv
      
      * apply suggestions from review
      
      * Update src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * make style
      
      * smaller models in fast tests
      
      * pass sequential offloading fast tests
      
      * add docs for vae and autoencoder
      
      * make style and update example
      
      * remove useless import
      
      * add cosine scheduler
      
      * dummy classes
      
      * cosine scheduler docs
      
      * better description of scheduler
      
      ---------
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      69e72b1d
  14. 20 Jul, 2024 1 commit
  15. 18 Jul, 2024 1 commit
  16. 17 Jul, 2024 1 commit
  17. 11 Jul, 2024 1 commit
  18. 08 Jul, 2024 2 commits
  19. 27 Jun, 2024 1 commit
  20. 12 Jun, 2024 2 commits
  21. 05 Jun, 2024 1 commit
  22. 29 May, 2024 1 commit
  23. 24 May, 2024 1 commit
  24. 16 May, 2024 1 commit
  25. 10 May, 2024 1 commit
    • Mark Van Aken's avatar
      #7535 Update FloatTensor type hints to Tensor (#7883) · be4afa0b
      Mark Van Aken authored
      * find & replace all FloatTensors to Tensor
      
      * apply formatting
      
      * Update torch.FloatTensor to torch.Tensor in the remaining files
      
      * formatting
      
      * Fix the rest of the places where FloatTensor is used as well as in documentation
      
      * formatting
      
      * Update new file from FloatTensor to Tensor
      be4afa0b
  26. 09 May, 2024 2 commits
  27. 08 May, 2024 1 commit
    • Philip Pham's avatar
      Check shape and remove deprecated APIs in scheduling_ddpm_flax.py (#7703) · f29b9348
      Philip Pham authored
      `model_output.shape` may only have rank 1.
      
      There are warnings related to use of random keys.
      
      ```
      tests/schedulers/test_scheduler_flax.py: 13 warnings
        /Users/phillypham/diffusers/src/diffusers/schedulers/scheduling_ddpm_flax.py:268: FutureWarning: normal accepts a single key, but was given a key array of shape (1, 2) != (). Use jax.vmap for batching. In a future JAX version, this will be an error.
          noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype)
      
      tests/schedulers/test_scheduler_flax.py::FlaxDDPMSchedulerTest::test_betas
        /Users/phillypham/virtualenv/diffusers/lib/python3.9/site-packages/jax/_src/random.py:731: FutureWarning: uniform accepts a single key, but was given a key array of shape (1,) != (). Use jax.vmap for batching. In a future JAX version, this will be an error.
          u = uniform(key, shape, dtype, lo, hi)  # type: ignore[arg-type]
      ```
      f29b9348
  28. 03 May, 2024 1 commit
  29. 29 Apr, 2024 1 commit
  30. 27 Apr, 2024 1 commit
  31. 03 Apr, 2024 2 commits
    • Beinsezii's avatar
      UniPC Multistep add `rescale_betas_zero_snr` (#7531) · aa190259
      Beinsezii authored
      * UniPC Multistep add `rescale_betas_zero_snr`
      
      Same patch as DPM and Euler with the patched final alpha cumprod
      
      BF16 doesn't seem to break down, I think cause UniPC upcasts during some
      phases already? We could still force an upcast since it only
      loses ≈ 0.005 it/s for me but the difference in output is very small. A
      better endeavor might upcasting in step() and removing all the other
      upcasts elsewhere?
      
      * UniPC ZSNR UT
      
      * Re-add `rescale_betas_zsnr` doc oops
      aa190259
    • Beinsezii's avatar
      UniPC Multistep fix tensor dtype/device on order=3 (#7532) · 19ab04ff
      Beinsezii authored
      * UniPC UTs iterate solvers on FP16
      
      It wasn't catching errs on order==3. Might be excessive?
      
      * UniPC Multistep fix tensor dtype/device on order=3
      
      * UniPC UTs Add v_pred to fp16 test iter
      
      For completions sake. Probably overkill?
      19ab04ff