"docs/vscode:/vscode.git/clone" did not exist on "cc0d1beb2a089f75d5d50c9ba727514e23442622"
  1. 20 Dec, 2023 1 commit
    • Beinsezii's avatar
      EulerAncestral add `rescale_betas_zero_snr` (#6187) · 457abdf2
      Beinsezii authored
      
      
      * EulerAncestral add `rescale_betas_zero_snr`
      
      Uses same infinite sigma fix from EulerDiscrete. Interestingly the
      ancestral version had the opposite problem: too much contrast instead of
      too little.
      
      * UT for EulerAncestral `rescale_betas_zero_snr`
      
      * EulerAncestral upcast samples during step()
      
      It helps this scheduler too, particularly when the model is using bf16.
      
      While the noise dtype is still the model's it's automatically upcasted
      for the add so all it affects is determinism.
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      457abdf2
  2. 15 Dec, 2023 1 commit
  3. 07 Dec, 2023 2 commits
  4. 06 Dec, 2023 4 commits
  5. 01 Dec, 2023 1 commit
  6. 29 Nov, 2023 1 commit
    • Suraj Patil's avatar
      Add SVD (#5895) · 63f767ef
      Suraj Patil authored
      
      
      * begin model
      
      * finish blocks
      
      * add_embedding
      
      * addition_time_embed_dim
      
      * use TimestepEmbedding
      
      * fix temporal res block
      
      * fix time_pos_embed
      
      * fix add_embedding
      
      * add conversion script
      
      * fix model
      
      * up
      
      * add new resnet blocks
      
      * make forward work
      
      * return sample in original shape
      
      * fix temb shape in TemporalResnetBlock
      
      * add spatio temporal transformers
      
      * add vae blocks
      
      * fix blocks
      
      * update
      
      * update
      
      * fix shapes in Alphablender and add time activation in res blcok
      
      * use new blocks
      
      * style
      
      * fix temb shape
      
      * fix SpatioTemporalResBlock
      
      * reuse TemporalBasicTransformerBlock
      
      * fix TemporalBasicTransformerBlock
      
      * use TransformerSpatioTemporalModel
      
      * fix TransformerSpatioTemporalModel
      
      * fix time_context dim
      
      * clean up
      
      * make temb optional
      
      * add blocks
      
      * rename model
      
      * update conversion script
      
      * remove UNetMidBlockSpatioTemporal
      
      * add in init
      
      * remove unused arg
      
      * remove unused arg
      
      * remove more unsed args
      
      * up
      
      * up
      
      * check for None
      
      * update vae
      
      * update up/mid blocks for decoder
      
      * begin pipeline
      
      * adapt scheduler
      
      * add guidance scalings
      
      * fix norm eps in temporal transformers
      
      * add temporal autoencoder
      
      * make pipeline run
      
      * fix frame decodig
      
      * decode in float32
      
      * decode n frames at a time
      
      * pass decoding_t to decode_latents
      
      * fix decode_latents
      
      * vae encode/decode in fp32
      
      * fix dtype in TransformerSpatioTemporalModel
      
      * type image_latents same as image_embeddings
      
      * allow using differnt eps in temporal block for video decoder
      
      * fix default values in vae
      
      * pass num frames in decode
      
      * switch spatial to temporal for mixing in VAE
      
      * fix num frames during split decoding
      
      * cast alpha to sample dtype
      
      * fix attention in MidBlockTemporalDecoder
      
      * fix typo
      
      * fix guidance_scales dtype
      
      * fix missing activation in TemporalDecoder
      
      * skip_post_quant_conv
      
      * add vae conversion
      
      * style
      
      * take guidance scale as input
      
      * up
      
      * allow passing PIL to export_video
      
      * accept fps as arg
      
      * add pipeline and vae in init
      
      * remove hack
      
      * use AutoencoderKLTemporalDecoder
      
      * don't scale image latents
      
      * add unet tests
      
      * clean up unet
      
      * clean TransformerSpatioTemporalModel
      
      * add slow svd test
      
      * clean up
      
      * make temb optional in Decoder mid block
      
      * fix norm eps in TransformerSpatioTemporalModel
      
      * clean up temp decoder
      
      * clean up
      
      * clean up
      
      * use c_noise values for timesteps
      
      * use math for log
      
      * update
      
      * fix copies
      
      * doc
      
      * upcast vae
      
      * update forward pass for gradient checkpointing
      
      * make added_time_ids is tensor
      
      * up
      
      * fix upcasting
      
      * remove post quant conv
      
      * add _resize_with_antialiasing
      
      * fix _compute_padding
      
      * cleanup model
      
      * more cleanup
      
      * more cleanup
      
      * more cleanup
      
      * remove freeu
      
      * remove attn slice
      
      * small clean
      
      * up
      
      * up
      
      * remove extra step kwargs
      
      * remove eta
      
      * remove dropout
      
      * remove callback
      
      * remove merge factor args
      
      * clean
      
      * clean up
      
      * move to dedicated folder
      
      * remove attention_head_dim
      
      * docstr and small fix
      
      * update unet doc strings
      
      * rename decoding_t
      
      * correct linting
      
      * store c_skip and c_out
      
      * cleanup
      
      * clean TemporalResnetBlock
      
      * more cleanup
      
      * clean up vae
      
      * clean up
      
      * begin doc
      
      * more cleanup
      
      * up
      
      * up
      
      * doc
      
      * Improve
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * Apply suggestions from code review
      
      * Default chunk size to None
      
      * add example
      
      * Better
      
      * Apply suggestions from code review
      
      * update doc
      
      * Update src/diffusers/pipelines/stable_diffusion_video/pipeline_stable_diffusion_video.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * style
      
      * Get torch compile working
      
      * up
      
      * rename
      
      * fix doc
      
      * add chunking
      
      * torch compile
      
      * torch compile
      
      * add modelling outputs
      
      * torch compile
      
      * Improve chunking
      
      * Apply suggestions from code review
      
      * Update docs/source/en/using-diffusers/svd.md
      
      * Close diff tag
      
      * remove slicing
      
      * resnet docstr
      
      * add docstr in resnet
      
      * rename
      
      * Apply suggestions from code review
      
      * update tests
      
      * Fix output type latents
      
      * fix more
      
      * fix more
      
      * Update docs/source/en/using-diffusers/svd.md
      
      * fix more
      
      * add pipeline tests
      
      * remove unused arg
      
      * clean  up
      
      * make sure get_scaling receives tensors
      
      * fix euler scheduler
      
      * fix get_scalings
      
      * simply euler for now
      
      * remove old test file
      
      * use randn_tensor to create noise
      
      * fix device for rand tensor
      
      * increase expected_max_difference
      
      * fix test_inference_batch_single_identical
      
      * actually fix test_inference_batch_single_identical
      
      * disable test_save_load_float16
      
      * skip test_float16_inference
      
      * skip test_inference_batch_single_identical
      
      * fix test_xformers_attention_forwardGenerator_pass
      
      * Apply suggestions from code review
      
      * update StableVideoDiffusionPipelineSlowTests
      
      * update image
      
      * add diffusers example
      
      * fix more
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarapolinário <joaopaulo.passos@gmail.com>
      63f767ef
  7. 27 Nov, 2023 2 commits
    • dg845's avatar
      Add Custom Timesteps Support to LCMScheduler and Supported Pipelines (#5874) · 67d07074
      dg845 authored
      * Add custom timesteps support to LCMScheduler.
      
      * Add custom timesteps support to StableDiffusionPipeline.
      
      * Add custom timesteps support to StableDiffusionXLPipeline.
      
      * Add custom timesteps support to remaining Stable Diffusion pipelines which support LCMScheduler (img2img, inpaint).
      
      * Add custom timesteps support to remaining Stable Diffusion XL pipelines which support LCMScheduler (img2img, inpaint).
      
      * Add custom timesteps support to StableDiffusionControlNetPipeline.
      
      * Add custom timesteps support to T21 Stable Diffusion (XL) Adapters.
      
      * Clean up Stable Diffusion inpaint tests.
      
      * Manually add support for custom timesteps to AltDiffusion pipelines since make fix-copies doesn't appear to work correctly (it deletes the whole pipeline).
      
      * make style
      
      * Refactor pipeline timestep handling into the retrieve_timesteps function.
      67d07074
    • Aryan V S's avatar
      Deprecate KarrasVeScheduler and ScoreSdeVpScheduler (#5269) · 9c357bda
      Aryan V S authored
      
      
      * deprecated: KarrasVeScheduler, ScoreSdeVpScheduler
      
      * delete tests relevant to deprecated schedulers
      
      * chore: run make style
      
      * fix: import error caused due to incorrect _import_structure after deprecation
      
      * fix: ScoreSdeVpScheduler was not importable from diffusers
      
      * remove import added by assumption
      
      * Update src/diffusers/schedulers/__init__.py as suggested by @patrickvonplaten
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * make it a part deprecated
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Fix
      
      * fix
      
      * fix doc
      
      * fix doc....again.......
      
      * remove karras_ve test folder
      Co-Authored-By: default avatarYiYi Xu <yixu310@gmail.com>
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      Co-authored-by: default avataryiyixuxu <yixu310@gmail,com>
      9c357bda
  8. 20 Nov, 2023 2 commits
  9. 14 Nov, 2023 1 commit
  10. 09 Nov, 2023 1 commit
  11. 07 Nov, 2023 1 commit
    • dg845's avatar
      Improve LCMScheduler (#5681) · aab6de22
      dg845 authored
      
      
      * Refactor LCMScheduler.step such that prev_sample == denoised at the last timestep in the schedule.
      
      * Make timestep scaling when calculating boundary conditions configurable.
      
      * Reparameterize timestep_scaling to be a multiplicative rather than division scaling.
      
      * make style
      
      * fix dtype conversion
      
      * make style
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      aab6de22
  12. 02 Nov, 2023 1 commit
  13. 31 Oct, 2023 1 commit
  14. 30 Oct, 2023 1 commit
  15. 24 Oct, 2023 1 commit
    • dg845's avatar
      Add Latent Consistency Models Pipeline (#5448) · 958e17da
      dg845 authored
      
      
      * initial commit for LatentConsistencyModelPipeline and LCMScheduler based on the community pipeline
      
      * Add callback and freeu support.
      
      * apply suggestions from review
      
      * Clean up LCMScheduler
      
      * Remove timeindex argument to LCMScheduler.step.
      
      * Add support for clipping or thresholding the predicted original sample.
      
      * Remove unused methods and arguments in LCMScheduler.
      
      * Improve comment about (lack of) negative prompt support.
      
      * Change input guidance_scale to match the StableDiffusionPipeline (Imagen) CFG formulation.
      
      * Move lcm_origin_steps from pipeline __call__ to LCMScheduler.__init__/config (as origin_steps).
      
      * Fix typo when clipping/thresholding in LCMScheduler.
      
      * Add some initial LCMScheduler tests.
      
      * add type annotations from review
      
      * Fix type annotation bug.
      
      * Override test_add_noise_device in LCMSchedulerTest since hardcoded timesteps doesn't work under default settings.
      
      * Add generator argument pipeline prepare_latents call.
      
      * Cast LCMScheduler.timesteps to long in set_timesteps.
      
      * Add onestep and multistep full loop scheduler tests.
      
      * Set default height/width to None and don't hardcode guidance scale embedding dim.
      
      * Add initial LatentConsistencyPipeline fast and slow tests.
      
      * Add initial documentation for LatentConsistencyModelPipeline and LCMScheduler.
      
      * Make remaining failing fast tests pass.
      
      * make style
      
      * Make original_inference_steps configurable from pipeline __call__ again.
      
      * make style
      
      * Remove guidance_rescale arg from pipeline __call__ since LCM currently doesn't support CFG.
      
      * Make LCMScheduler defaults match config of LCM_Dreamshaper_v7 checkpoint.
      
      * Fix LatentConsistencyPipeline slow tests and add dummy expected slices.
      
      * Add checks for original_steps in LCMScheduler.set_timesteps.
      
      * make fix-copies
      
      * Improve LatentConsistencyModelPipeline docs.
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * Update src/diffusers/schedulers/scheduling_lcm.py
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * finish
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      958e17da
  16. 16 Oct, 2023 1 commit
  17. 09 Oct, 2023 1 commit
  18. 03 Oct, 2023 1 commit
  19. 02 Oct, 2023 2 commits
  20. 29 Sep, 2023 2 commits
  21. 26 Sep, 2023 1 commit
  22. 25 Sep, 2023 3 commits
  23. 23 Sep, 2023 1 commit
  24. 22 Sep, 2023 1 commit
    • Pedro Cuenca's avatar
      SDXL flax (#4254) · 3651b14c
      Pedro Cuenca authored
      
      
      * support transformer_layers_per block in flax UNet
      
      * add support for text_time additional embeddings to Flax UNet
      
      * rename attention layers for VAE
      
      * add shape asserts when renaming attention layers
      
      * transpose VAE attention layers
      
      * add pipeline flax SDXL code [WIP]
      
      * continue add pipeline flax SDXL code [WIP]
      
      * cleanup
      
      * Working on JIT support
      
      Fixed prompt embedding shapes so they work in parallel mode. Assuming we
      always have both text encoders for now, for simplicity.
      
      * Fixing embeddings (untested)
      
      * Remove spurious line
      
      * Shard guidance_scale when jitting.
      
      * Decode images
      
      * Fix sharding
      
      * style
      
      * Refiner UNet can be loaded.
      
      * Refiner / img2img pipeline
      
      * Allow latent outputs from base and latent inputs in refiner
      
      This makes it possible to chain base + refiner without having to use the
      vae decoder in the base model, the vae encoder in the refiner, skipping
      conversions to/from PIL, and avoiding TPU <-> CPU memory copies.
      
      * Adapt to FlaxCLIPTextModelOutput
      
      * Update Flax XL pipeline to FlaxCLIPTextModelOutput
      
      * make fix-copies
      
      * make style
      
      * add euler scheduler
      
      * Fix import
      
      * Fix copies, comment unused code.
      
      * Fix SDXL Flax imports
      
      * Fix euler discrete begin
      
      * improve init import
      
      * finish
      
      * put discrete euler in init
      
      * fix flax euler
      
      * Fix more
      
      * make style
      
      * correct init
      
      * correct init
      
      * Temporarily remove FlaxStableDiffusionXLImg2ImgPipeline
      
      * correct pipelines
      
      * finish
      
      ---------
      Co-authored-by: default avatarMartin Müller <martin.muller.me@gmail.com>
      Co-authored-by: default avatarpatil-suraj <surajp815@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      3651b14c
  25. 21 Sep, 2023 1 commit
  26. 19 Sep, 2023 1 commit
  27. 14 Sep, 2023 1 commit
  28. 12 Sep, 2023 1 commit
  29. 11 Sep, 2023 1 commit
    • Dhruv Nair's avatar
      Lazy Import for Diffusers (#4829) · b6e0b016
      Dhruv Nair authored
      
      
      * initial commit
      
      * move modules to import struct
      
      * add dummy objects and _LazyModule
      
      * add lazy import to schedulers
      
      * clean up unused imports
      
      * lazy import on models module
      
      * lazy import for schedulers module
      
      * add lazy import to pipelines module
      
      * lazy import altdiffusion
      
      * lazy import audio diffusion
      
      * lazy import audioldm
      
      * lazy import consistency model
      
      * lazy import controlnet
      
      * lazy import dance diffusion ddim ddpm
      
      * lazy import deepfloyd
      
      * lazy import kandinksy
      
      * lazy imports
      
      * lazy import semantic diffusion
      
      * lazy imports
      
      * lazy import stable diffusion
      
      * move sd output to its own module
      
      * clean up
      
      * lazy import t2iadapter
      
      * lazy import unclip
      
      * lazy import versatile and vq diffsuion
      
      * lazy import vq diffusion
      
      * helper to fetch objects from modules
      
      * lazy import sdxl
      
      * lazy import txt2vid
      
      * lazy import stochastic karras
      
      * fix model imports
      
      * fix bug
      
      * lazy import
      
      * clean up
      
      * clean up
      
      * fixes for tests
      
      * fixes for tests
      
      * clean up
      
      * remove import of torch_utils from utils module
      
      * clean up
      
      * clean up
      
      * fix mistake import statement
      
      * dedicated modules for exporting and loading
      
      * remove testing utils from utils module
      
      * fixes from  merge conflicts
      
      * Update src/diffusers/pipelines/kandinsky2_2/__init__.py
      
      * fix docs
      
      * fix alt diffusion copied from
      
      * fix check dummies
      
      * fix more docs
      
      * remove accelerate import from utils module
      
      * add type checking
      
      * make style
      
      * fix check dummies
      
      * remove torch import from xformers check
      
      * clean up error message
      
      * fixes after upstream merges
      
      * dummy objects fix
      
      * fix tests
      
      * remove unused module import
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      b6e0b016
  30. 06 Sep, 2023 1 commit
    • Kashif Rasul's avatar
      Würstchen model (#3849) · 541bb6ee
      Kashif Rasul authored
      
      
      * initial
      
      * initial
      
      * added initial convert script for paella vqmodel
      
      * initial wuerstchen pipeline
      
      * add LayerNorm2d
      
      * added modules
      
      * fix typo
      
      * use model_v2
      
      * embed clip caption amd negative_caption
      
      * fixed name of var
      
      * initial modules in one place
      
      * WuerstchenPriorPipeline
      
      * inital shape
      
      * initial denoising prior loop
      
      * fix output
      
      * add WuerstchenPriorPipeline to __init__.py
      
      * use the noise ratio in the Prior
      
      * try to save pipeline
      
      * save_pretrained working
      
      * Few additions
      
      * add _execution_device
      
      * shape is int
      
      * fix batch size
      
      * fix shape of ratio
      
      * fix shape of ratio
      
      * fix output dataclass
      
      * tests folder
      
      * fix formatting
      
      * fix float16 + started with generator
      
      * Update pipeline_wuerstchen.py
      
      * removed vqgan code
      
      * add WuerstchenGeneratorPipeline
      
      * fix WuerstchenGeneratorPipeline
      
      * fix docstrings
      
      * fix imports
      
      * convert generator pipeline
      
      * fix convert
      
      * Work on Generator Pipeline. WIP
      
      * Pipeline works with our diffuzz code
      
      * apply scale factor
      
      * removed vqgan.py
      
      * use cosine schedule
      
      * redo the denoising loop
      
      * Update src/diffusers/models/resnet.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * use torch.lerp
      
      * use warp-diffusion org
      
      * clip_sample=False,
      
      * some refactoring
      
      * use model_v3_stage_c
      
      * c_cond size
      
      * use clip-bigG
      
      * allow stage b clip to be None
      
      * add dummy
      
      * würstchen scheduler
      
      * minor changes
      
      * set clip=None in the pipeline
      
      * fix attention mask
      
      * add attention_masks to text_encoder
      
      * make fix-copies
      
      * add back clip
      
      * add text_encoder
      
      * gen_text_encoder and tokenizer
      
      * fix import
      
      * updated pipeline test
      
      * undo changes to pipeline test
      
      * nip
      
      * fix typo
      
      * fix output name
      
      * set guidance_scale=0 and remove diffuze
      
      * fix doc strings
      
      * make style
      
      * nip
      
      * removed unused
      
      * initial docs
      
      * rename
      
      * toc
      
      * cleanup
      
      * remvoe test script
      
      * fix-copies
      
      * fix multi images
      
      * remove dup
      
      * remove unused modules
      
      * undo changes for debugging
      
      * no  new line
      
      * remove dup conversion script
      
      * fix doc string
      
      * cleanup
      
      * pass default args
      
      * dup permute
      
      * fix some tests
      
      * fix prepare_latents
      
      * move Prior class to modules
      
      * offload only the text encoder and vqgan
      
      * fix resolution calculation for prior
      
      * nip
      
      * removed testing script
      
      * fix shape
      
      * fix argument to set_timesteps
      
      * do not change .gitignore
      
      * fix resolution calculations + readme
      
      * resolution calculation fix + readme
      
      * small fixes
      
      * Add combined pipeline
      
      * rename generator -> decoder
      
      * Update .gitignore
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * removed efficient_net
      
      * create combined WuerstchenPipeline
      
      * make arguments consistent with VQ model
      
      * fix var names
      
      * no need to return text_encoder_hidden_states
      
      * add latent_dim_scale to config
      
      * split model into its own file
      
      * add WuerschenPipeline to docs
      
      * remove unused latent_size
      
      * register latent_dim_scale
      
      * update script
      
      * update docstring
      
      * use Attention preprocessor
      
      * concat with normed input
      
      * fix-copies
      
      * add docs
      
      * fix test
      
      * fix style
      
      * add to cpu_offloaded_model
      
      * updated type
      
      * remove 1-line func
      
      * updated type
      
      * initial decoder test
      
      * formatting
      
      * formatting
      
      * fix autodoc link
      
      * num_inference_steps is int
      
      * remove comments
      
      * fix example in docs
      
      * Update src/diffusers/pipelines/wuerstchen/diffnext.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * rename layernorm to WuerstchenLayerNorm
      
      * rename DiffNext to WuerstchenDiffNeXt
      
      * added comment about MixingResidualBlock
      
      * move paella vq-vae to pipelines' folder
      
      * initial decoder test
      
      * increased test_float16_inference expected diff
      
      * self_attn is always true
      
      * more passing decoder tests
      
      * batch image_embeds
      
      * fix failing tests
      
      * set the correct dtype
      
      * relax inference test
      
      * update prior
      
      * added combined pipeline test
      
      * faster test
      
      * faster test
      
      * Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix issues from review
      
      * update wuerstchen.md + change generator name
      
      * resolve issues
      
      * fix copied from usage and add back batch_size
      
      * fix API
      
      * fix arguments
      
      * fix combined test
      
      * Added timesteps argument + fixes
      
      * Update tests/pipelines/test_pipelines_common.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/pipelines/wuerstchen/test_wuerstchen_prior.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
      
      * up
      
      * Fix more
      
      * failing tests
      
      * up
      
      * up
      
      * correct naming
      
      * correct docs
      
      * correct docs
      
      * fix test params
      
      * correct docs
      
      * fix classifier free guidance
      
      * fix classifier free guidance
      
      * fix more
      
      * fix all
      
      * make tests faster
      
      ---------
      Co-authored-by: default avatarDominic Rampas <d6582533@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarDominic Rampas <61938694+dome272@users.noreply.github.com>
      541bb6ee