1. 11 Apr, 2023 1 commit
    • Chanchana Sornsoontorn's avatar
      Fix typo and format BasicTransformerBlock attributes (#2953) · 52c4d32d
      Chanchana Sornsoontorn authored
      * ️chore(train_controlnet) fix typo in logger message
      
      * ️chore(models) refactor modules order; make them the same as calling order
      
      When printing the BasicTransformerBlock to stdout, I think it's crucial that the attributes order are shown in proper order. And also previously the "3. Feed Forward" comment was not making sense. It should have been close to self.ff but it's instead next to self.norm3
      
      * correct many tests
      
      * remove bogus file
      
      * make style
      
      * correct more tests
      
      * finish tests
      
      * fix one more
      
      * make style
      
      * make unclip deterministic
      
      * 
      
      ️chore(models/attention) reorganize comments in BasicTransformerBlock class
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      52c4d32d
  2. 22 Mar, 2023 1 commit
    • Patrick von Platen's avatar
      [MS Text To Video] Add first text to video (#2738) · ca1a2229
      Patrick von Platen authored
      
      
      * [MS Text To Video} Add first text to video
      
      * upload
      
      * make first model example
      
      * match unet3d params
      
      * make sure weights are correcctly converted
      
      * improve
      
      * forward pass works, but diff result
      
      * make forward work
      
      * fix more
      
      * finish
      
      * refactor video output class.
      
      * feat: add support for a video export utility.
      
      * fix: opencv availability check.
      
      * run make fix-copies.
      
      * add: docs for the model components.
      
      * add: standalone pipeline doc.
      
      * edit docstring of the pipeline.
      
      * add: right path to TransformerTempModel
      
      * add: first set of tests.
      
      * complete fast tests for text to video.
      
      * fix bug
      
      * up
      
      * three fast tests failing.
      
      * add: note on slow tests
      
      * make work with all schedulers
      
      * apply styling.
      
      * add slow tests
      
      * change file name
      
      * update
      
      * more correction
      
      * more fixes
      
      * finish
      
      * up
      
      * Apply suggestions from code review
      
      * up
      
      * finish
      
      * make copies
      
      * fix pipeline tests
      
      * fix more tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * apply suggestions
      
      * up
      
      * revert
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ca1a2229
  3. 21 Mar, 2023 1 commit
  4. 15 Mar, 2023 1 commit
  5. 13 Mar, 2023 1 commit
  6. 01 Mar, 2023 1 commit
  7. 07 Feb, 2023 1 commit
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  8. 27 Jan, 2023 2 commits
  9. 24 Jan, 2023 1 commit
  10. 17 Jan, 2023 1 commit
    • Kashif Rasul's avatar
      DiT Pipeline (#1806) · 37d113cc
      Kashif Rasul authored
      
      
      * added dit model
      
      * import
      
      * initial pipeline
      
      * initial convert script
      
      * initial pipeline
      
      * make style
      
      * raise valueerror
      
      * single function
      
      * rename classes
      
      * use DDIMScheduler
      
      * timesteps embedder
      
      * samples to cpu
      
      * fix var names
      
      * fix numpy type
      
      * use timesteps class for proj
      
      * fix typo
      
      * fix arg name
      
      * flip_sin_to_cos and better var names
      
      * fix C shape cal
      
      * make style
      
      * remove unused imports
      
      * cleanup
      
      * add back patch_size
      
      * initial dit doc
      
      * typo
      
      * Update docs/source/api/pipelines/dit.mdx
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * added copyright license headers
      
      * added example usage and toc
      
      * fix variable names asserts
      
      * remove comment
      
      * added docs
      
      * fix typo
      
      * upstream changes
      
      * set proper device for drop_ids
      
      * added initial dit pipeline test
      
      * update docs
      
      * fix imports
      
      * make fix-copies
      
      * isort
      
      * fix imports
      
      * get rid of more magic numbers
      
      * fix code when guidance is off
      
      * remove block_kwargs
      
      * cleanup script
      
      * removed to_2tuple
      
      * use FeedForward class instead of another MLP
      
      * style
      
      * work on mergint DiTBlock with BasicTransformerBlock
      
      * added missing final_dropout and args to BasicTransformerBlock
      
      * use norm from block
      
      * fix arg
      
      * remove unused arg
      
      * fix call to class_embedder
      
      * use timesteps
      
      * make style
      
      * attn_output gets multiplied
      
      * removed commented code
      
      * use Transformer2D
      
      * use self.is_input_patches
      
      * fix flags
      
      * fixed conversion to use Transformer2DModel
      
      * fixes for pipeline
      
      * remove dit.py
      
      * fix timesteps device
      
      * use randn_tensor and fix fp16 inf.
      
      * timesteps_emb already the right dtype
      
      * fix dit test class
      
      * fix test and style
      
      * fix norm2 usage in vq-diffusion
      
      * added author names to pipeline and lmagenet labels link
      
      * fix tests
      
      * use norm_type as string
      
      * rename dit to transformer
      
      * fix name
      
      * fix test
      
      * set  norm_type = "layer" by default
      
      * fix tests
      
      * do not skip common tests
      
      * Update src/diffusers/models/attention.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * revert AdaLayerNorm API
      
      * fix norm_type name
      
      * make sure all components are in eval mode
      
      * revert norm2 API
      
      * compact
      
      * finish deprecation
      
      * add slow tests
      
      * remove @
      
      * refactor some stuff
      
      * upload
      
      * Update src/diffusers/pipelines/dit/pipeline_dit.py
      
      * finish more
      
      * finish docs
      
      * improve docs
      
      * finish docs
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      37d113cc
  11. 16 Jan, 2023 1 commit
  12. 01 Jan, 2023 1 commit
  13. 30 Dec, 2022 1 commit
  14. 28 Dec, 2022 1 commit
  15. 27 Dec, 2022 1 commit
  16. 20 Dec, 2022 3 commits
  17. 19 Dec, 2022 3 commits
  18. 18 Dec, 2022 1 commit
    • Will Berman's avatar
      kakaobrain unCLIP (#1428) · 2dcf64b7
      Will Berman authored
      
      
      * [wip] attention block updates
      
      * [wip] unCLIP unet decoder and super res
      
      * [wip] unCLIP prior transformer
      
      * [wip] scheduler changes
      
      * [wip] text proj utility class
      
      * [wip] UnCLIPPipeline
      
      * [wip] kakaobrain unCLIP convert script
      
      * [unCLIP pipeline] fixes re: @patrickvonplaten
      
      remove callbacks
      
      move denoising loops into call function
      
      * UNCLIPScheduler re: @patrickvonplaten
      
      Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified
      DDPM scheduler with changes to support karlo
      
      * mask -> attention_mask re: @patrickvonplaten
      
      * [DDPMScheduler] remove leftover change
      
      * [docs] PriorTransformer
      
      * [docs] UNet2DConditionModel and UNet2DModel
      
      * [nit] UNCLIPScheduler -> UnCLIPScheduler
      
      matches existing unclip naming better
      
      * [docs] SchedulingUnCLIP
      
      * [docs] UnCLIPTextProjModel
      
      * refactor
      
      * finish licenses
      
      * rename all to attention_mask and prep in models
      
      * more renaming
      
      * don't expose unused configs
      
      * final renaming fixes
      
      * remove x attn mask when not necessary
      
      * configure kakao script to use new class embedding config
      
      * fix copies
      
      * [tests] UnCLIPScheduler
      
      * finish x attn
      
      * finish
      
      * remove more
      
      * rename condition blocks
      
      * clean more
      
      * Apply suggestions from code review
      
      * up
      
      * fix
      
      * [tests] UnCLIPPipelineFastTests
      
      * remove unused imports
      
      * [tests] UnCLIPPipelineIntegrationTests
      
      * correct
      
      * make style
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      2dcf64b7
  19. 09 Dec, 2022 1 commit
  20. 07 Dec, 2022 3 commits
  21. 05 Dec, 2022 1 commit
  22. 03 Dec, 2022 1 commit
  23. 02 Dec, 2022 1 commit
  24. 01 Dec, 2022 1 commit
  25. 25 Nov, 2022 1 commit
    • Kashif Rasul's avatar
      [MPS] call contiguous after permute (#1411) · babfb8a0
      Kashif Rasul authored
      * call contiguous after permute
      
      Fixes for MPS device
      
      * Fix MPS UserWarning
      
      * make style
      
      * Revert "Fix MPS UserWarning"
      
      This reverts commit b46c32810ee5fdc4c16a8e9224a826490b66cf49.
      babfb8a0
  26. 24 Nov, 2022 1 commit
    • Suraj Patil's avatar
      Adapt UNet2D for supre-resolution (#1385) · cecdd8bd
      Suraj Patil authored
      * allow disabling self attention
      
      * add class_embedding
      
      * fix copies
      
      * fix condition
      
      * fix copies
      
      * do_self_attention -> only_cross_attention
      
      * fix copies
      
      * num_classes -> num_class_embeds
      
      * fix default value
      cecdd8bd
  27. 23 Nov, 2022 3 commits
    • Suraj Patil's avatar
      [Transformer2DModel] don't norm twice (#1381) · 15241225
      Suraj Patil authored
      don't norm twice
      15241225
    • Suraj Patil's avatar
      update unet2d (#1376) · f07a16e0
      Suraj Patil authored
      * boom boom
      
      * remove duplicate arg
      
      * add use_linear_proj arg
      
      * fix copies
      
      * style
      
      * add fast tests
      
      * use_linear_proj -> use_linear_projection
      f07a16e0
    • Patrick von Platen's avatar
      [Versatile Diffusion] Add versatile diffusion model (#1283) · 2625fb59
      Patrick von Platen authored
      
      
      * up
      
      * convert dual unet
      
      * revert dual attn
      
      * adapt for vd-official
      
      * test the full pipeline
      
      * mixed inference
      
      * mixed inference for text2img
      
      * add image prompting
      
      * fix clip norm
      
      * split text2img and img2img
      
      * fix format
      
      * refactor text2img
      
      * mega pipeline
      
      * add optimus
      
      * refactor image var
      
      * wip text_unet
      
      * text unet end to end
      
      * update tests
      
      * reshape
      
      * fix image to text
      
      * add some first docs
      
      * dual guided pipeline
      
      * fix token ratio
      
      * propose change
      
      * dual transformer as a native module
      
      * DualTransformer(nn.Module)
      
      * DualTransformer(nn.Module)
      
      * correct unconditional image
      
      * save-load with mega pipeline
      
      * remove image to text
      
      * up
      
      * uP
      
      * fix
      
      * up
      
      * final fix
      
      * remove_unused_weights
      
      * test updates
      
      * save progress
      
      * uP
      
      * fix dual prompts
      
      * some fixes
      
      * finish
      
      * style
      
      * finish renaming
      
      * up
      
      * fix
      
      * fix
      
      * fix
      
      * finish
      Co-authored-by: default avataranton-l <anton@huggingface.co>
      2625fb59
  28. 22 Nov, 2022 1 commit
  29. 21 Nov, 2022 1 commit
  30. 14 Nov, 2022 1 commit
  31. 08 Nov, 2022 1 commit