"docs/vscode:/vscode.git/clone" did not exist on "d32a5980ca553f70fd55600b28dd8bb1017704c6"
- 03 Jun, 2024 1 commit
-
-
XCL authored
* add hunyuandit doc * update hunyuandit doc * update hunyuandit 2d model * update toctree.yml for hunyuandit
-
- 31 May, 2024 2 commits
-
-
Anton Obukhov authored
* rename prs-eth/marigold-lcm-v1-0 into prs-eth/marigold-depth-lcm-v1-0 * update image paths in https://huggingface.co/datasets/huggingface/documentation-images to use main branch * fix relative paths to other diffusers pages * Update docs/source/en/using-diffusers/marigold_usage.md Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
Sayak Paul authored
* init for patches * finish patched model. * continuous transformer * vectorized transformer2d. * style. * inits. * fix-copies. * introduce DiTTransformer2DModel. * fixes * use REMAPPING as suggested by @DN6 * better logging. * add pixart transformer model. * inits. * caption_channels. * attention masking. * fix use_additional_conditions. * remove print. * debug * flatten * fix: assertion for sigma * handle remapping for modeling_utils * add tests for dit transformer2d * quality * placeholder for pixart tests * pixart tests * add _no_split_modules * add docs. * check * check * check * check * fix tests * fix tests * move Transformer output to modeling_output * move errors better and bring back use_additional_conditions attribute. * add unnecessary things from DiT. * clean up pixart * fix remapping * fix device_map things in pixart2d. * replace Transformer2DModel with appropriate classes in dit, pixart tests * empty * legacy mixin classes./ * use a remapping dict for fetching class names. * change to specifc model types in the pipeline implementations. * move _fetch_remapped_cls_from_config to modeling_loading_utils.py * fix dependency problems. * add deprecation note.
-
- 29 May, 2024 3 commits
-
-
Steven Liu authored
* files and formats * fix callout * feedback * code sample * feedback
-
Steven Liu authored
deepfloyd training Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Sayak Paul authored
move vqmodel to models.autoencoders.
-
- 28 May, 2024 4 commits
-
-
Steven Liu authored
* first draft * edits
-
Steven Liu authored
* noise schedule * sigmas and zero snr * feedback * feedback
-
Jiwook Han authored
fix typo in philosophy.md
-
Álvaro Somoza authored
* initial doc * fix wrong LCM sentence * implement binary colormap without requiring matplotlib update section about Marigold for ControlNet update formatting of marigold_usage.md * fix indentation --------- Co-authored-by:anton <anton.obukhov@gmail.com>
-
- 27 May, 2024 2 commits
-
-
Anton Obukhov authored
* implement marigold depth and normals pipelines in diffusers core * remove bibtex * remove deprecations * remove save_memory argument * remove validate_vae * remove config output * remove batch_size autodetection * remove presets logic move default denoising_steps and processing_resolution into the model config make default ensemble_size 1 * remove no_grad * add fp16 to the example usage * implement is_matplotlib_available use is_matplotlib_available, is_scipy_available for conditional imports in the marigold depth pipeline * move colormap, visualize_depth, and visualize_normals into export_utils.py * make the denoising loop more lucid fix the outputs to always be 4d tensors or lists of pil images support a 4d input_image case attempt to support model_cpu_offload_seq move check_inputs into a separate function change default batch_size to 1, remove any logic to make it bigger implicitly * style * rename denoising_steps into num_inference_steps * rename input_image into image * rename input_latent into latents * remove decode_image change decode_prediction to use the AutoencoderKL.decode method * move clean_latent outside of progress_bar * refactor marigold-reusable image processing bits into MarigoldImageProcessor class * clean up the usage example docstring * make ensemble functions members of the pipelines * add early checks in check_inputs rename E into ensemble_size in depth ensembling * fix vae_scale_factor computation * better compatibility with torch.compile better variable naming * move export_depth_to_png to export_utils * remove encode_prediction * improve visualize_depth and visualize_normals to accept multi-dimensional data and lists remove visualization functions from the pipelines move exporting depth as 16-bit PNGs functionality from the depth pipeline update example docstrings * do not shortcut vae.config variables * change all asserts to raise ValueError * rename output_prediction_type to output_type * better variable names clean up variable deletion code * better variable names * pass desc and leave kwargs into the diffusers progress_bar implement nested progress bar for images and steps loops * implement scale_invariant and shift_invariant flags in the ensemble_depth function add scale_invariant and shift_invariant flags readout from the model config further refactor ensemble_depth support ensembling without alignment add ensemble_depth docstring * fix generator device placement checks * move encode_empty_text body into the pipeline call * minor empty text encoding simplifications * adjust pipelines' class docstrings to explain the added construction arguments * improve the scipy failure condition add comments improve docstrings change the default use_full_z_range to True * make input image values range check configurable in the preprocessor refactor load_image_canonical in preprocessor to reject unknown types and return the image in the expected 4D format of tensor and on right device support a list of everything as inputs to the pipeline, change type to PipelineImageInput implement a check that all input list elements have the same dimensions improve docstrings of pipeline outputs remove check_input pipeline argument * remove forgotten print * add prediction_type model config * add uncertainty visualization into export utils fix NaN values in normals uncertainties * change default of output_uncertainty to False better handle the case of an attempt to export or visualize none * fix `output_uncertainty=False` * remove kwargs fix check_inputs according to the new inputs of the pipeline * rename prepare_latent into prepare_latents as in other pipelines annotate prepare_latents in normals pipeline with "Copied from" annotate encode_image in normals pipeline with "Copied from" * move nested-capable `progress_bar` method into the pipelines revert the original `progress_bar` method in pipeline_utils * minor message improvement * fix cpu offloading * move colormap, visualize_depth, export_depth_to_16bit_png, visualize_normals, visualize_uncertainty to marigold_image_processing.py update example docstrings * fix missing comma * change torch.FloatTensor to torch.Tensor * fix importing of MarigoldImageProcessor * fix vae offloading fix batched image encoding remove separate encode_image function and use vae.encode instead * implement marigold's intial tests relax generator checks in line with other pipelines implement return_dict __call__ argument in line with other pipelines * fix num_images computation * remove MarigoldImageProcessor and outputs from import structure update tests * update docstrings * update init * update * style * fix * fix * up * up * up * add simple test * up * update expected np input/output to be channel last * move expand_tensor_or_array into the MarigoldImageProcessor * rewrite tests to follow conventions - hardcoded slices instead of image artifacts write more smoke tests * add basic docs. * add anton's contribution statement * remove todos. * fix assertion values for marigold depth slow tests * fix assertion values for depth normals. * remove print * support AutoencoderTiny in the pipelines * update documentation page add Available Pipelines section add Available Checkpoints section add warning about num_inference_steps * fix missing import in docstring fix wrong value in visualize_depth docstring * [doc] add marigold to pipelines overview * [doc] add section "usage examples" * fix an issue with latents check in the pipelines * add "Frame-by-frame Video Processing with Consistency" section * grammarly * replace tables with images with css-styled images (blindly) * style * print * fix the assertions. * take from the github runner. * take the slices from action artifacts * style. * update with the slices from the runner. * remove unnecessary code blocks. * Revert "[doc] add marigold to pipelines overview" This reverts commit a505165150afd8dab23c474d1a054ea505a56a5f. * remove invitation for new modalities * split out marigold usage examples * doc cleanup --------- Co-authored-by:
yiyixuxu <yixu310@gmail.com> Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
sayakpaul <spsayakpaul@gmail.com>
-
Dhaivat Bhatt authored
* Add details about 1-stage implementation * Add details about 1-stage implementation
-
- 24 May, 2024 3 commits
-
-
Tolga Cangöz authored
* Fix typos * Fix `pipe.enable_model_cpu_offload()` usage * Fix cpu offloading * Update numbers
-
Yue Wu authored
sampling bug fix in basic_training.md In the diffusers basic training tutorial, setting the manual seed argument (generator=torch.manual_seed(config.seed)) in the pipeline call inside evaluate() function rewinds the dataloader shuffling, leading to overfitting due to the model seeing same sequence of training examples after every evaluation call. Using generator=torch.Generator(device='cpu').manual_seed(config.seed) avoids this.
-
Dhruv Nair authored
* update * update
-
- 21 May, 2024 1 commit
-
-
Steven Liu authored
* fix? * fix? * fix
-
- 20 May, 2024 2 commits
-
-
Junsong Chen authored
* 1. add doc for PixArtSigmaPipeline; --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by:
Guillaume LEGENDRE <glegendre01@gmail.com> Co-authored-by:
Álvaro Somoza <asomoza@users.noreply.github.com> Co-authored-by:
Bagheera <59658056+bghira@users.noreply.github.com> Co-authored-by:
bghira <bghira@users.github.com> Co-authored-by:
Hyoungwon Cho <jhw9811@korea.ac.kr> Co-authored-by:
yiyixuxu <yixu310@gmail.com> Co-authored-by:
Tolga Cangöz <46008593+standardAI@users.noreply.github.com> Co-authored-by:
Philip Pham <phillypham@google.com>
-
Jacob Marks authored
-
- 13 May, 2024 1 commit
-
-
Álvaro Somoza authored
-
- 10 May, 2024 4 commits
-
-
Mark Van Aken authored
* find & replace all FloatTensors to Tensor * apply formatting * Update torch.FloatTensor to torch.Tensor in the remaining files * formatting * Fix the rest of the places where FloatTensor is used as well as in documentation * formatting * Update new file from FloatTensor to Tensor
-
Sayak Paul authored
* introduce videoprocessor. * fix quality * address yiyi's feedback * fix preprocess_video call. * video_processor -> image_processor * fix * fix more. * quality * image_processor -> video_processor * support List[List[PIL.Image.Image]] * change to video_processor. * documentation * Apply suggestions from code review * changes * remove print. * refactor video processor (part # 7776) (#7861) * update * update remove deprecate * Update src/diffusers/video_processor.py * update * Apply suggestions from code review * deprecate list of 5d for video and list of 4d for image + apply other feedbacks * up --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * add doc. * tensor2vid -> postprocess_video. * refactor preprocess with preprocess_video * set default values. * empty commit * more refactoring of prepare_latents in animatediff vid2vid * checking documentation * remove documentation for now. * fix animatediff sdxl * fix test failure [part of video processor PR] (#7905) up * remove preceed_with_frames. * doc * fix * fix * remove video input as a single-frame video. --------- Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
Sayak Paul authored
add missing processors.
-
Sayak Paul authored
* upgrade to python 3.10 * fix * try https://askubuntu.com/questions/1459694/can-not-find-python3-10-after-apt-get-installation * fix * up * yes * okay * up * up * up * up * up * check * okay * up * i[ * fix
-
- 09 May, 2024 2 commits
-
-
YiYi Xu authored
* support custom sigmas and timesteps, dpm euler --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
Dhruv Nair authored
* refactor unet single file loading a bit. * retrieve the unet from create_diffusers_unet_model_from_ldm * update * update * updae * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * tests * update * update * update * Update docs/source/en/api/single_file.md Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/single_file.md Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * update * update * update * update * update * update * update * update * update * update * update * update * update * Update docs/source/en/api/loaders/single_file.md Co-authored-by:
YiYi Xu <yixu310@gmail.com> * Update src/diffusers/loaders/single_file.py Co-authored-by:
YiYi Xu <yixu310@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update --------- Co-authored-by:
sayakpaul <spsayakpaul@gmail.com> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 08 May, 2024 1 commit
-
-
Aryan authored
* update conversion script to handle motion adapter sdxl checkpoint * add animatediff xl * handle addition_embed_type * fix output * update * add imports * make fix-copies * add decode latents * update docstrings * add animatediff sdxl to docs * remove unnecessary lines * update example * add test * revert conv_in conv_out kernel param * remove unused param addition_embed_type_num_heads * latest IPAdapter impl * make fix-copies * fix return * add IPAdapterTesterMixin to tests * fix return * revert based on suggestion * add freeinit * fix test_to_dtype test * use StableDiffusionMixin instead of different helper methods * fix progress bar iterations * apply suggestions from review * hardcode flip_sin_to_cos and freq_shift * make fix-copies * fix ip adapter implementation * fix last failing test * make style * Update docs/source/en/api/pipelines/animatediff.md Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> * remove todo * fix doc-builder errors --------- Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com>
-
- 07 May, 2024 1 commit
-
-
Bagheera authored
* 7879 - adjust documentation to use naruto dataset, since pokemon is now gated * replace references to pokemon in docs * more references to pokemon replaced * Japanese translation update --------- Co-authored-by:bghira <bghira@users.github.com>
-
- 06 May, 2024 1 commit
-
-
Steven Liu authored
* combine * edits
-
- 03 May, 2024 2 commits
-
-
Steven Liu authored
* lcm * lcm lora * fix * fix hfoption * edits
-
HelloWorldBeginner authored
Add Ascend NPU support for SDXL fine-tuning and fix the model saving bug when using DeepSpeed. (#7816) * Add Ascend NPU support for SDXL fine-tuning and fix the model saving bug when using DeepSpeed. * fix check code quality * Decouple the NPU flash attention and make it an independent module. * add doc and unit tests for npu flash attention. --------- Co-authored-by:
mhh001 <mahonghao1@huawei.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com>
-
- 30 Apr, 2024 1 commit
-
-
Steven Liu authored
* community pipelines * feedback * consolidate
-
- 28 Apr, 2024 1 commit
-
-
Jenyuan-Huang authored
* enable control ip-adapter per-transformer block on-the-fly --------- Co-authored-by:
sayakpaul <spsayakpaul@gmail.com> Co-authored-by:
ResearcherXman <xhs.research@gmail.com> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 26 Apr, 2024 1 commit
-
-
Fabio Rigano authored
* [Docs] Update image masking and face id example * Update docs * Fix docs
-
- 25 Apr, 2024 2 commits
-
-
Steven Liu authored
* refactor * code snippets * fix path * fix path in guide * code outputs * align toctree title * title * fix title
-
Steven Liu authored
* reproducibility * feedback * feedback * fix path * github link
-
- 23 Apr, 2024 1 commit
-
-
Steven Liu authored
* toctree * optim * feedback * improve overview
-
- 22 Apr, 2024 2 commits
-
-
Jenyuan-Huang authored
* enable control ip-adapter per-transformer block on-the-fly --------- Co-authored-by:
sayakpaul <spsayakpaul@gmail.com> Co-authored-by:
ResearcherXman <xhs.research@gmail.com> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
Steven Liu authored
* autopipeline * edits * feedback --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
- 19 Apr, 2024 1 commit
-
-
Fabio Rigano authored
* Switch to peft and multi proj layers * Move Face ID loading and inference to core --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
- 17 Apr, 2024 1 commit
-
-
Steven Liu authored
* pipelines * schedulers and models * community pipelines * feedback
-