"docs/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "d176f61fcf231c97025f016f6ad520bcc6276db6"
Unverified Commit 7404f1e9 authored by Steven Liu's avatar Steven Liu Committed by GitHub
Browse files

[docs] Clean up toctree (#7715)

* toctree

* optim

* feedback

* improve overview
parent 5a692278
...@@ -23,156 +23,146 @@ ...@@ -23,156 +23,146 @@
title: Accelerate inference of text-to-image diffusion models title: Accelerate inference of text-to-image diffusion models
title: Tutorials title: Tutorials
- sections: - sections:
- local: using-diffusers/loading
title: Load pipelines
- local: using-diffusers/custom_pipeline_overview
title: Load community pipelines and components
- local: using-diffusers/schedulers
title: Load schedulers and models
- local: using-diffusers/using_safetensors
title: Load safetensors
- local: using-diffusers/other-formats
title: Load different Stable Diffusion formats
- local: using-diffusers/loading_adapters
title: Load adapters
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Load pipelines and adapters
- sections:
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation
- local: using-diffusers/conditional_image_generation
title: Text-to-image
- local: using-diffusers/img2img
title: Image-to-image
- local: using-diffusers/inpaint
title: Inpainting
- local: using-diffusers/text-img2vid
title: Text or image-to-video
- local: using-diffusers/depth2img
title: Depth-to-image
title: Generative tasks
- sections:
- local: using-diffusers/overview_techniques
title: Overview
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/callback
title: Pipeline callbacks
- local: using-diffusers/reusing_seeds
title: Improve image quality with deterministic generation
- local: using-diffusers/control_brightness
title: Control image brightness
- local: using-diffusers/weighted_prompts
title: Prompt techniques
- local: using-diffusers/freeu
title: Improve generation quality with FreeU
title: Inference techniques
- sections:
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/sdxl_turbo
title: SDXL Turbo
- local: using-diffusers/kandinsky
title: Kandinsky
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/t2i_adapter
title: T2I-Adapter
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- local: using-diffusers/shap-e
title: Shap-E
- local: using-diffusers/diffedit
title: DiffEdit
- local: using-diffusers/reproducibility
title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
title: Community pipelines
- local: using-diffusers/contribute_pipeline
title: Contribute a community pipeline
- local: using-diffusers/inference_with_lcm_lora
title: Latent Consistency Model-LoRA
- local: using-diffusers/inference_with_lcm
title: Latent Consistency Model
- local: using-diffusers/inference_with_tcd_lora
title: Trajectory Consistency Distillation-LoRA
- local: using-diffusers/svd
title: Stable Video Diffusion
title: Specific pipeline examples
- sections:
- local: training/overview
title: Overview
- local: training/create_dataset
title: Create a dataset for training
- local: training/adapt_a_model
title: Adapt a model to a new task
- sections: - sections:
- local: using-diffusers/loading - local: training/unconditional_training
title: Load pipelines
- local: using-diffusers/custom_pipeline_overview
title: Load community pipelines and components
- local: using-diffusers/schedulers
title: Load schedulers and models
- local: using-diffusers/using_safetensors
title: Load safetensors
- local: using-diffusers/other-formats
title: Load different Stable Diffusion formats
- local: using-diffusers/loading_adapters
title: Load adapters
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Loading & Hub
- sections:
- local: using-diffusers/pipeline_overview
title: Overview
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation title: Unconditional image generation
- local: using-diffusers/conditional_image_generation - local: training/text2image
title: Text-to-image title: Text-to-image
- local: using-diffusers/img2img - local: training/sdxl
title: Image-to-image
- local: using-diffusers/inpaint
title: Inpainting
- local: using-diffusers/text-img2vid
title: Text or image-to-video
- local: using-diffusers/depth2img
title: Depth-to-image
title: Tasks
- sections:
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/reusing_seeds
title: Improve image quality with deterministic generation
- local: using-diffusers/control_brightness
title: Control image brightness
- local: using-diffusers/weighted_prompts
title: Prompt techniques
- local: using-diffusers/freeu
title: Improve generation quality with FreeU
title: Techniques
- sections:
- local: using-diffusers/pipeline_overview
title: Overview
- local: using-diffusers/sdxl
title: Stable Diffusion XL title: Stable Diffusion XL
- local: using-diffusers/sdxl_turbo - local: training/kandinsky
title: SDXL Turbo title: Kandinsky 2.2
- local: using-diffusers/kandinsky - local: training/wuerstchen
title: Kandinsky title: Wuerstchen
- local: using-diffusers/controlnet - local: training/controlnet
title: ControlNet title: ControlNet
- local: using-diffusers/t2i_adapter - local: training/t2i_adapters
title: T2I-Adapter title: T2I-Adapters
- local: using-diffusers/shap-e - local: training/instructpix2pix
title: Shap-E title: InstructPix2Pix
- local: using-diffusers/diffedit title: Models
title: DiffEdit isExpanded: false
- local: using-diffusers/distilled_sd
title: Distilled Stable Diffusion inference
- local: using-diffusers/callback
title: Pipeline callbacks
- local: using-diffusers/reproducibility
title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
title: Community pipelines
- local: using-diffusers/contribute_pipeline
title: Contribute a community pipeline
- local: using-diffusers/inference_with_lcm_lora
title: Latent Consistency Model-LoRA
- local: using-diffusers/inference_with_lcm
title: Latent Consistency Model
- local: using-diffusers/inference_with_tcd_lora
title: Trajectory Consistency Distillation-LoRA
- local: using-diffusers/svd
title: Stable Video Diffusion
title: Specific pipeline examples
- sections:
- local: training/overview
title: Overview
- local: training/create_dataset
title: Create a dataset for training
- local: training/adapt_a_model
title: Adapt a model to a new task
- sections:
- local: training/unconditional_training
title: Unconditional image generation
- local: training/text2image
title: Text-to-image
- local: training/sdxl
title: Stable Diffusion XL
- local: training/kandinsky
title: Kandinsky 2.2
- local: training/wuerstchen
title: Wuerstchen
- local: training/controlnet
title: ControlNet
- local: training/t2i_adapters
title: T2I-Adapters
- local: training/instructpix2pix
title: InstructPix2Pix
title: Models
- sections:
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/lora
title: LoRA
- local: training/custom_diffusion
title: Custom Diffusion
- local: training/lcm_distill
title: Latent Consistency Distillation
- local: training/ddpo
title: Reinforcement learning training with DDPO
title: Methods
title: Training
- sections: - sections:
- local: using-diffusers/other-modalities - local: training/text_inversion
title: Other Modalities title: Textual Inversion
title: Taking Diffusers Beyond Images - local: training/dreambooth
title: Using Diffusers title: DreamBooth
- local: training/lora
title: LoRA
- local: training/custom_diffusion
title: Custom Diffusion
- local: training/lcm_distill
title: Latent Consistency Distillation
- local: training/ddpo
title: Reinforcement learning training with DDPO
title: Methods
isExpanded: false
title: Training
- sections: - sections:
- local: optimization/opt_overview - local: optimization/fp16
title: Overview title: Speed up inference
- sections: - local: using-diffusers/distilled_sd
- local: optimization/fp16 title: Distilled Stable Diffusion inference
title: Speed up inference - local: optimization/memory
- local: optimization/memory title: Reduce memory usage
title: Reduce memory usage - local: optimization/torch2.0
- local: optimization/torch2.0 title: PyTorch 2.0
title: PyTorch 2.0 - local: optimization/xformers
- local: optimization/xformers title: xFormers
title: xFormers - local: optimization/tome
- local: optimization/tome title: Token merging
title: Token merging - local: optimization/deepcache
- local: optimization/deepcache title: DeepCache
title: DeepCache - local: optimization/tgate
- local: optimization/tgate title: TGATE
title: TGATE
title: General optimizations
- sections: - sections:
- local: using-diffusers/stable_diffusion_jax_how_to - local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax title: JAX/Flax
...@@ -182,14 +172,14 @@ ...@@ -182,14 +172,14 @@
title: OpenVINO title: OpenVINO
- local: optimization/coreml - local: optimization/coreml
title: Core ML title: Core ML
title: Optimized model types title: Optimized model formats
- sections: - sections:
- local: optimization/mps - local: optimization/mps
title: Metal Performance Shaders (MPS) title: Metal Performance Shaders (MPS)
- local: optimization/habana - local: optimization/habana
title: Habana Gaudi title: Habana Gaudi
title: Optimized hardware title: Optimized hardware
title: Optimization title: Accelerate inference and reduce memory
- sections: - sections:
- local: conceptual/philosophy - local: conceptual/philosophy
title: Philosophy title: Philosophy
...@@ -211,6 +201,7 @@ ...@@ -211,6 +201,7 @@
- local: api/outputs - local: api/outputs
title: Outputs title: Outputs
title: Main Classes title: Main Classes
isExpanded: false
- sections: - sections:
- local: api/loaders/ip_adapter - local: api/loaders/ip_adapter
title: IP-Adapter title: IP-Adapter
...@@ -225,6 +216,7 @@ ...@@ -225,6 +216,7 @@
- local: api/loaders/peft - local: api/loaders/peft
title: PEFT title: PEFT
title: Loaders title: Loaders
isExpanded: false
- sections: - sections:
- local: api/models/overview - local: api/models/overview
title: Overview title: Overview
...@@ -259,6 +251,7 @@ ...@@ -259,6 +251,7 @@
- local: api/models/controlnet - local: api/models/controlnet
title: ControlNet title: ControlNet
title: Models title: Models
isExpanded: false
- sections: - sections:
- local: api/pipelines/overview - local: api/pipelines/overview
title: Overview title: Overview
...@@ -383,6 +376,7 @@ ...@@ -383,6 +376,7 @@
- local: api/pipelines/wuerstchen - local: api/pipelines/wuerstchen
title: Wuerstchen title: Wuerstchen
title: Pipelines title: Pipelines
isExpanded: false
- sections: - sections:
- local: api/schedulers/overview - local: api/schedulers/overview
title: Overview title: Overview
...@@ -443,6 +437,7 @@ ...@@ -443,6 +437,7 @@
- local: api/schedulers/vq_diffusion - local: api/schedulers/vq_diffusion
title: VQDiffusionScheduler title: VQDiffusionScheduler
title: Schedulers title: Schedulers
isExpanded: false
- sections: - sections:
- local: api/internal_classes_overview - local: api/internal_classes_overview
title: Overview title: Overview
...@@ -457,4 +452,5 @@ ...@@ -457,4 +452,5 @@
- local: api/image_processor - local: api/image_processor
title: VAE Image Processor title: VAE Image Processor
title: Internal classes title: Internal classes
isExpanded: false
title: API title: API
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
Generating high-quality outputs is computationally intensive, especially during each iterative step where you go from a noisy output to a less noisy output. One of 🤗 Diffuser's goals is to make this technology widely accessible to everyone, which includes enabling fast inference on consumer and specialized hardware.
This section will cover tips and tricks - like half-precision weights and sliced attention - for optimizing inference speed and reducing memory-consumption. You'll also learn how to speed up your PyTorch code with [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) or [ONNX Runtime](https://onnxruntime.ai/docs/), and enable memory-efficient attention with [xFormers](https://facebookresearch.github.io/xformers/). There are also guides for running inference on specific hardware like Apple Silicon, and Intel or Habana processors.
...@@ -10,12 +10,9 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o ...@@ -10,12 +10,9 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License. specific language governing permissions and limitations under the License.
--> -->
# Using Diffusers with other modalities # Overview
Diffusers is in the process of expanding to modalities other than images. The inference pipeline supports and enables a wide range of techniques that are divided into two categories:
Example type | Colab | Pipeline | * Pipeline functionality: these techniques modify the pipeline or extend it for other applications. For example, pipeline callbacks add new features to a pipeline and a pipeline can also be extended for distributed inference.
:-------------------------:|:-------------------------:|:-------------------------:| * Improve inference quality: these techniques increase the visual quality of the generated images. For example, you can enhance your prompts with GPT2 to create better images with lower effort.
[Molecule conformation](https://www.nature.com/subjects/molecular-conformation#:~:text=Definition,to%20changes%20in%20their%20environment.) generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/geodiff_molecule_conformation.ipynb) | ❌
More coming soon!
\ No newline at end of file
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
A pipeline is an end-to-end class that provides a quick and easy way to use a diffusion system for inference by bundling independently trained models and schedulers together. Certain combinations of models and schedulers define specific pipeline types, like [`StableDiffusionXLPipeline`] or [`StableDiffusionControlNetPipeline`], with specific capabilities. All pipeline types inherit from the base [`DiffusionPipeline`] class; pass it any checkpoint, and it'll automatically detect the pipeline type and load the necessary components.
This section demonstrates how to use specific pipelines such as Stable Diffusion XL, ControlNet, and DiffEdit. You'll also learn how to use a distilled version of the Stable Diffusion model to speed up inference, how to create reproducible pipelines, and how to use and contribute community pipelines.
# GeoDiff
> [!TIP]
> This notebook is not actively maintained by the Diffusers team. For any questions or comments, please contact [natolambert](https://twitter.com/natolambert).
This is an experimental research notebook demonstrating how to generate stable 3D structures of molecules with [GeoDiff](https://github.com/MinkaiXu/GeoDiff) and Diffusers.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment