- 09 May, 2024 1 commit
-
-
YiYi Xu authored
* support custom sigmas and timesteps, dpm euler --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
- 29 Apr, 2024 1 commit
-
-
RuiningLi authored
* Added get_velocity function to EulerDiscreteScheduler. * Fix white space on blank lines * Added copied from statement * back to the original. --------- Co-authored-by:
Ruining Li <ruining@robots.ox.ac.uk> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com>
-
- 21 Mar, 2024 1 commit
-
-
M. Tolga Cangöz authored
* Fix typos * Fix typo in SVD.md
-
- 19 Mar, 2024 1 commit
-
-
YiYi Xu authored
* fix * fix * add a tests * fix --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
yiyixuxu <yixu310@gmail,com>
-
- 18 Mar, 2024 2 commits
-
-
M. Tolga Cangöz authored
Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
M. Tolga Cangöz authored
* Fix PyTorch's convention for inplace functions * Fix import structure in __init__.py and update config loading logic in test_config.py * Update configuration access * Fix typos * Trim trailing white spaces * Fix typo in logger name * Revert "Fix PyTorch's convention for inplace functions" This reverts commit f65dc4afcb57ceb43d5d06389229d47bafb10d2d. * Fix typo in step_index property description * Revert "Update configuration access" This reverts commit 8d44e870b8c1ad08802e3e904c34baeca1b598f8. * Revert "Fix import structure in __init__.py and update config loading logic in test_config.py" This reverts commit 2ad5e8bca25aede3b912da22bd57285b598fe171. * Fix typos * Fix typos * Fix typos * Fix a typo: tranform -> transform
-
- 14 Mar, 2024 1 commit
-
-
Beinsezii authored
* Change step_offset scheduler docstrings * Mention it may be needed by some models * More docstrings These ones failed literal S&R because I performed it case-sensitive which is fun. --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
- 04 Mar, 2024 1 commit
-
-
Thiago Crepaldi authored
* Enable FakeTensorMode for EulerDiscreteScheduler scheduler PyTorch's FakeTensorMode does not support `.numpy()` or `numpy.array()` calls. This PR replaces `sigmas` numpy tensor by a PyTorch tensor equivalent Repro ```python with torch._subclasses.FakeTensorMode() as fake_mode, ONNXTorchPatcher(): fake_model = DiffusionPipeline.from_pretrained(model_name, low_cpu_mem_usage=False) ``` that otherwise would fail with `RuntimeError: .numpy() is not supported for tensor subclasses.` * Address comments
-
- 08 Feb, 2024 1 commit
-
-
Sayak Paul authored
change to 2024
-
- 01 Feb, 2024 1 commit
-
-
YiYi Xu authored
-
- 26 Jan, 2024 1 commit
-
-
Patrick von Platen authored
-
- 15 Dec, 2023 1 commit
-
-
Patrick von Platen authored
* correct * Apply suggestions from code review * make style
-
- 07 Dec, 2023 1 commit
-
-
Beinsezii authored
* EulerDiscreteScheduler add `rescale_betas_zero_snr`
-
- 06 Dec, 2023 3 commits
-
-
Ian authored
-
Patrick von Platen authored
* [Euler Discrete] Fix sigma * make style
-
Sayak Paul authored
* debug * from step * print * turn sigma a list * make str * init_noise_sigma * comment * remove prints * feat: introduce fused projections * change to a better name * no grad * device. * device * dtype * okay * print * more print * fix: unbind -> split * fix: qkv >-> k * enable disable * apply attention processor within the method * attn processors * _enable_fused_qkv_projections * remove print * add fused projection to vae * add todos. * add: documentation and cleanups. * add: test for qkv projection fusion. * relax assertions. * relax further * fix: docs * fix-copies * correct error message. * Empty-Commit * better conditioning on disable_fused_qkv_projections * check * check processor * bfloat16 computation. * check latent dtype * style * remove copy temporarily * cast latent to bfloat16 * fix: vae -> self.vae * remove print. * add _change_to_group_norm_32 * comment out stuff that didn't work * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * reflect patrick's suggestions. * fix imports * fix: disable call. * fix more * fix device and dtype * fix conditions. * fix more * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 29 Nov, 2023 1 commit
-
-
Suraj Patil authored
* begin model * finish blocks * add_embedding * addition_time_embed_dim * use TimestepEmbedding * fix temporal res block * fix time_pos_embed * fix add_embedding * add conversion script * fix model * up * add new resnet blocks * make forward work * return sample in original shape * fix temb shape in TemporalResnetBlock * add spatio temporal transformers * add vae blocks * fix blocks * update * update * fix shapes in Alphablender and add time activation in res blcok * use new blocks * style * fix temb shape * fix SpatioTemporalResBlock * reuse TemporalBasicTransformerBlock * fix TemporalBasicTransformerBlock * use TransformerSpatioTemporalModel * fix TransformerSpatioTemporalModel * fix time_context dim * clean up * make temb optional * add blocks * rename model * update conversion script * remove UNetMidBlockSpatioTemporal * add in init * remove unused arg * remove unused arg * remove more unsed args * up * up * check for None * update vae * update up/mid blocks for decoder * begin pipeline * adapt scheduler * add guidance scalings * fix norm eps in temporal transformers * add temporal autoencoder * make pipeline run * fix frame decodig * decode in float32 * decode n frames at a time * pass decoding_t to decode_latents * fix decode_latents * vae encode/decode in fp32 * fix dtype in TransformerSpatioTemporalModel * type image_latents same as image_embeddings * allow using differnt eps in temporal block for video decoder * fix default values in vae * pass num frames in decode * switch spatial to temporal for mixing in VAE * fix num frames during split decoding * cast alpha to sample dtype * fix attention in MidBlockTemporalDecoder * fix typo * fix guidance_scales dtype * fix missing activation in TemporalDecoder * skip_post_quant_conv * add vae conversion * style * take guidance scale as input * up * allow passing PIL to export_video * accept fps as arg * add pipeline and vae in init * remove hack * use AutoencoderKLTemporalDecoder * don't scale image latents * add unet tests * clean up unet * clean TransformerSpatioTemporalModel * add slow svd test * clean up * make temb optional in Decoder mid block * fix norm eps in TransformerSpatioTemporalModel * clean up temp decoder * clean up * clean up * use c_noise values for timesteps * use math for log * update * fix copies * doc * upcast vae * update forward pass for gradient checkpointing * make added_time_ids is tensor * up * fix upcasting * remove post quant conv * add _resize_with_antialiasing * fix _compute_padding * cleanup model * more cleanup * more cleanup * more cleanup * remove freeu * remove attn slice * small clean * up * up * remove extra step kwargs * remove eta * remove dropout * remove callback * remove merge factor args * clean * clean up * move to dedicated folder * remove attention_head_dim * docstr and small fix * update unet doc strings * rename decoding_t * correct linting * store c_skip and c_out * cleanup * clean TemporalResnetBlock * more cleanup * clean up vae * clean up * begin doc * more cleanup * up * up * doc * Improve * better naming * better naming * better naming * better naming * better naming * better naming * better naming * better naming * Apply suggestions from code review * Default chunk size to None * add example * Better * Apply suggestions from code review * update doc * Update src/diffusers/pipelines/stable_diffusion_video/pipeline_stable_diffusion_video.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * style * Get torch compile working * up * rename * fix doc * add chunking * torch compile * torch compile * add modelling outputs * torch compile * Improve chunking * Apply suggestions from code review * Update docs/source/en/using-diffusers/svd.md * Close diff tag * remove slicing * resnet docstr * add docstr in resnet * rename * Apply suggestions from code review * update tests * Fix output type latents * fix more * fix more * Update docs/source/en/using-diffusers/svd.md * fix more * add pipeline tests * remove unused arg * clean up * make sure get_scaling receives tensors * fix euler scheduler * fix get_scalings * simply euler for now * remove old test file * use randn_tensor to create noise * fix device for rand tensor * increase expected_max_difference * fix test_inference_batch_single_identical * actually fix test_inference_batch_single_identical * disable test_save_load_float16 * skip test_float16_inference * skip test_inference_batch_single_identical * fix test_xformers_attention_forwardGenerator_pass * Apply suggestions from code review * update StableVideoDiffusionPipelineSlowTests * update image * add diffusers example * fix more --------- Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
apolinário <joaopaulo.passos@gmail.com>
-
- 20 Nov, 2023 1 commit
-
-
Kashif Rasul authored
* ruff format * not need to use doc-builder's black styling as the doc is styled in ruff * make fix-copies * comment * use run_ruff
-
- 31 Oct, 2023 1 commit
-
-
TimothyAlexisVass authored
-
- 11 Sep, 2023 1 commit
-
-
Dhruv Nair authored
* initial commit * move modules to import struct * add dummy objects and _LazyModule * add lazy import to schedulers * clean up unused imports * lazy import on models module * lazy import for schedulers module * add lazy import to pipelines module * lazy import altdiffusion * lazy import audio diffusion * lazy import audioldm * lazy import consistency model * lazy import controlnet * lazy import dance diffusion ddim ddpm * lazy import deepfloyd * lazy import kandinksy * lazy imports * lazy import semantic diffusion * lazy imports * lazy import stable diffusion * move sd output to its own module * clean up * lazy import t2iadapter * lazy import unclip * lazy import versatile and vq diffsuion * lazy import vq diffusion * helper to fetch objects from modules * lazy import sdxl * lazy import txt2vid * lazy import stochastic karras * fix model imports * fix bug * lazy import * clean up * clean up * fixes for tests * fixes for tests * clean up * remove import of torch_utils from utils module * clean up * clean up * fix mistake import statement * dedicated modules for exporting and loading * remove testing utils from utils module * fixes from merge conflicts * Update src/diffusers/pipelines/kandinsky2_2/__init__.py * fix docs * fix alt diffusion copied from * fix check dummies * fix more docs * remove accelerate import from utils module * add type checking * make style * fix check dummies * remove torch import from xformers check * clean up error message * fixes after upstream merges * dummy objects fix * fix tests * remove unused module import --------- Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 23 Aug, 2023 1 commit
-
-
YiYi Xu authored
add self.step_index --------- Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 09 Aug, 2023 1 commit
-
-
Steven Liu authored
* clean scheduler mixin * up to dpmsolvermultistep * finish cleaning * first draft * fix overview table * apply feedback * update reference code
-
- 06 Jul, 2023 1 commit
-
-
YiYi Xu authored
* refactor prior_transformer adding conversion script add pipeline add step_index from pipeline, + remove permute add zero pad token remove copy from statement for betas_for_alpha_bar function * add * add * update conversion script for renderer model * refactor camera a little bit * clean up * style * fix copies * Update src/diffusers/schedulers/scheduling_heun_discrete.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * alpha_transform_type * remove step_index argument * remove get_sigmas_karras * remove _yiyi_sigma_to_t * move the rescale prompt_embeds from prior_transformer to pipeline * replace baddbmm with einsum to match origial repo * Revert "replace baddbmm with einsum to match origial repo" This reverts commit 3f6b435d65dad3e5514cad2f5dd9e4419ca78e0b. * add step_index to scale_model_input * Revert "move the rescale prompt_embeds from prior_transformer to pipeline" This reverts commit 5b5a8e6be918fefd114a2945ed89d8e8fa8be21b. * move rescale from prior_transformer to pipeline * correct step_index in scale_model_input * remove print lines * refactor prior - reduce arguments * make style * add prior_image * arg embedding_proj_norm -> norm_embedding_proj * add pre-norm for proj_embedding * move rescale prompt from pipeline to _encode_prompt * add img2img pipeline * style * copies * Update src/diffusers/models/prior_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py add arg: encoder_hid_proj Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py add new config: norm_in_type Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py add new config: added_emb_type Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py rename out_dim -> clip_embed_dim Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py rename config: out_dim -> clip_embed_dim Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/prior_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * finish refactor prior_tranformer * make style * refactor renderer * fix * make style * refactor img2img * remove params_proj * add test * add upcast_softmax to prior_transformer * enable num_images_per_prompt, add save_gif utility * add * add fast test * make style * add slow test * style * add test for img2img * refactor * enable batching * style * refactor scheduler * update test * style * attempt to solve batch related tests timeout * add doc * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * hardcode rendering related config * update betas_for_alpha_bar on ddpm_scheduler * fix copies * fix * export_to_gif * style * second attempt to speed up batching tests * add doc page to index * Remove intermediate clipping * 3rd attempt to speed up batching tests * Remvoe time index * simplify scheduler * Fix more * Fix more * fix more * make style * fix schedulers * fix some more tests * finish * add one more test * Apply suggestions from code review Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * style * apply feedbacks * style * fix copies * add one example * style * add example for img2img * fix doc * fix more doc strings * size -> frame_size * style * update doc * style * fix on doc * update repo name * improve the usage example in shap-e img2img * add usage examples in the shap-e docs. * consolidate examples. * minor fix. * update doc * Apply suggestions from code review * Apply suggestions from code review * remove upcast * Make sure background is white * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py * Apply suggestions from code review * Finish * Apply suggestions from code review * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py * Make style --------- Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 05 Jul, 2023 1 commit
-
-
Pedro Cuenca authored
* Add timestep_spacing to DDPM, LMSDiscrete, PNDM. * Remove spurious line. * More easy schedulers. * Add `linspace` to DDIM * Noise sigma for `trailing`. * Add timestep_spacing to DEISMultistepScheduler. Not sure the range is the way it was intended. * Fix: remove line used to debug. * Support timestep_spacing in DPMSolverMultistep, DPMSolverSDE, UniPC * Fix: convert to numpy. * Use sched. defaults when instantiating from_config For params not present in the original configuration. This makes it possible to switch pipeline schedulers even if they use different timestep_spacing (or any other param). * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Missing args in DPMSolverMultistep * Test: default args not in config * Style * Fix scheduler name in test * Remove duplicated entries * Add test for solver_type This test currently fails in main. When switching from DEIS to UniPC, solver_type is "logrho" (the default value from DEIS), which gets translated to "bh1" by UniPC. This is different to the default value for UniPC: "bh2". This is where the translation happens: https://github.com/huggingface/diffusers/blob/36d22d0709dc19776e3016fb3392d0f5578b0ab2/src/diffusers/schedulers/scheduling_unipc_multistep.py#L171 * UniPC: use same default for solver_type Fixes a bug when switching from UniPC from another scheduler (i.e., DEIS) that uses a different solver type. The solver is now the same as if we had instantiated the scheduler directly. * do not save use default values * fix more * fix all * fix schedulers * fix more * finish for real * finish for real * flaky tests * Update tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py * Default steps_offset to 0. * Add missing docstrings * Apply suggestions from code review --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 12 Apr, 2023 1 commit
-
-
Nipun Jindal authored
* [2737]: Add Karras DPMSolverMultistepScheduler * [2737]: Add Karras DPMSolverMultistepScheduler * Add test * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix: repo consistency. * remove Copied from statement from the set_timestep method. * fix: test * Empty commit. Co-authored-by:
njindal <njindal@adobe.com> --------- Co-authored-by:
njindal <njindal@adobe.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com>
-
- 10 Apr, 2023 1 commit
-
-
William Berman authored
-
- 06 Apr, 2023 1 commit
-
-
Nipun Jindal authored
* [2905]: Add Karras pattern to discrete euler * [2905]: Add Karras pattern to discrete euler * Review comments * Review comments * Review comments * Review comments --------- Co-authored-by:njindal <njindal@adobe.com>
-
- 01 Mar, 2023 1 commit
-
-
Patrick von Platen authored
-
- 16 Feb, 2023 1 commit
-
-
Will Berman authored
-
- 07 Feb, 2023 1 commit
-
-
YiYi Xu authored
* Modify UNet2DConditionModel - allow skipping mid_block - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size` - allow user to set dimension for the timestep embedding (`time_embed_dim`) - the kernel_size for `conv_in` and `conv_out` is now configurable - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj` - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))` - added 2 arguments `attn1_types` and `attn2_types` * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the `BasicTransformerBlock` block with 2 cross-attention , otherwise we get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention; so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block; note that I stil kept the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks - the position of downsample layer and upsample layer is now configurable - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support this use case - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step inside cross attention block add up/down blocks for k-upscaler modify CrossAttention class - make the `dropout` layer in `to_out` optional - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states - `attention_dropout`: add an optional dropout on attention score adapt BasicTransformerBlock - add an ada groupnorm layer to conditioning attention input with timestep embedding - allow skipping the FeedForward layer in between the attentions - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration update timestep embedding: add new act_fn gelu and an optional act_2 modified ResnetBlock2D - refactored with AdaGroupNorm class (the timestep scale shift normalization) - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv - add option to use input AdaGroupNorm on the input instead of groupnorm - add options to add a dropout layer after each conv - allow user to set the bias in conv_shortcut (needed for k-upscaler) - add gelu adding conversion script for k-upscaler unet add pipeline * fix attention mask * fix a typo * fix a bug * make sure model can be used with GPU * make pipeline work with fp16 * fix an error in BasicTransfomerBlock * make style * fix typo * some more fixes * uP * up * correct more * some clean-up * clean time proj * up * uP * more changes * remove the upcast_attention=True from unet config * remove attn1_types, attn2_types etc * fix * revert incorrect changes up/down samplers * make style * remove outdated files * Apply suggestions from code review * attention refactor * refactor cross attention * Apply suggestions from code review * update * up * update * Apply suggestions from code review * finish * Update src/diffusers/models/cross_attention.py * more fixes * up * up * up * finish * more corrections of conversion state * act_2 -> act_2_fn * remove dropout_after_conv from ResnetBlock2D * make style * simplify KAttentionBlock * add fast test for latent upscaler pipeline * add slow test * slow test fp16 * make style * add doc string for pipeline_stable_diffusion_latent_upscale * add api doc page for latent upscaler pipeline * deprecate attention mask * clean up embeddings * simplify resnet * up * clean up resnet * up * correct more * up * up * improve a bit more * correct more * more clean-ups * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * add docstrings for new unet config * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * # Copied from * encode the image if not latent * remove force casting vae to fp32 * fix * add comments about preconditioning parameters from k-diffusion paper * attn1_type, attn2_type -> add_self_attention * clean up get_down_block and get_up_block * fix * fixed a typo(?) in ada group norm * update slice attention processer for cross attention * update slice * fix fast test * update the checkpoint * finish tests * fix-copies * fix-copy for modeling_text_unet.py * make style * make style * fix f-string * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix import * correct changes * fix resnet * make fix-copies * correct euler scheduler * add missing #copied from for preprocess * revert * fix * fix copies * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/models/cross_attention.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * clean up conversion script * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D * more * Update src/diffusers/models/unet_2d_condition.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * remove prepare_extra_step_kwargs * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix a typo in timestep embedding * remove num_image_per_prompt * fix fasttest * make style + fix-copies * fix * fix xformer test * fix style * doc string * make style * fix-copies * docstring for time_embedding_norm * make style * final finishes * make fix-copies * fix tests --------- Co-authored-by:
yiyixuxu <yixu@yis-macbook-pro.lan> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 27 Jan, 2023 2 commits
-
-
Patrick von Platen authored
-
Patrick von Platen authored
-
- 17 Jan, 2023 1 commit
-
-
Kashif Rasul authored
* added dit model * import * initial pipeline * initial convert script * initial pipeline * make style * raise valueerror * single function * rename classes * use DDIMScheduler * timesteps embedder * samples to cpu * fix var names * fix numpy type * use timesteps class for proj * fix typo * fix arg name * flip_sin_to_cos and better var names * fix C shape cal * make style * remove unused imports * cleanup * add back patch_size * initial dit doc * typo * Update docs/source/api/pipelines/dit.mdx Co-authored-by:
Suraj Patil <surajp815@gmail.com> * added copyright license headers * added example usage and toc * fix variable names asserts * remove comment * added docs * fix typo * upstream changes * set proper device for drop_ids * added initial dit pipeline test * update docs * fix imports * make fix-copies * isort * fix imports * get rid of more magic numbers * fix code when guidance is off * remove block_kwargs * cleanup script * removed to_2tuple * use FeedForward class instead of another MLP * style * work on mergint DiTBlock with BasicTransformerBlock * added missing final_dropout and args to BasicTransformerBlock * use norm from block * fix arg * remove unused arg * fix call to class_embedder * use timesteps * make style * attn_output gets multiplied * removed commented code * use Transformer2D * use self.is_input_patches * fix flags * fixed conversion to use Transformer2DModel * fixes for pipeline * remove dit.py * fix timesteps device * use randn_tensor and fix fp16 inf. * timesteps_emb already the right dtype * fix dit test class * fix test and style * fix norm2 usage in vq-diffusion * added author names to pipeline and lmagenet labels link * fix tests * use norm_type as string * rename dit to transformer * fix name * fix test * set norm_type = "layer" by default * fix tests * do not skip common tests * Update src/diffusers/models/attention.py Co-authored-by:
Suraj Patil <surajp815@gmail.com> * revert AdaLayerNorm API * fix norm_type name * make sure all components are in eval mode * revert norm2 API * compact * finish deprecation * add slow tests * remove @ * refactor some stuff * upload * Update src/diffusers/pipelines/dit/pipeline_dit.py * finish more * finish docs * improve docs * finish docs Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
William Berman <WLBberman@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 16 Jan, 2023 1 commit
-
-
Patrick von Platen authored
-
- 04 Jan, 2023 1 commit
-
-
Patrick von Platen authored
* [Repro] Correct reproducability * up * up * uP * up * need better image * allow conversion from no state dict checkpoints * up * up * up * up * check tensors * check tensors * check tensors * check tensors * next try * up * up * better name * up * up * Apply suggestions from code review * correct more * up * replace all torch randn * fix * correct * correct * finish * fix more * up
-
- 02 Dec, 2022 1 commit
-
-
Patrick von Platen authored
* up * up * finish * finish * up * up * finish
-
- 30 Nov, 2022 1 commit
-
-
Patrick von Platen authored
-
- 28 Nov, 2022 1 commit
-
-
Patrick von Platen authored
* Add heun * Finish first version of heun * remove bogus * finish * finish * improve * up * up * fix more * change progress bar * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py * finish * up * up * up
-
- 25 Nov, 2022 1 commit
-
-
Pedro Cuenca authored
* Adapt ddpm, ddpmsolver to prediction_type. * Deprecate predict_epsilon in __init__. * Bring FlaxDDIMScheduler up to date with DDIMScheduler. * Set prediction_type as an ivar for consistency. * Convert pipeline_ddpm * Adapt tests. * Adapt unconditional training script. * Adapt BitDiffusion example. * Add missing kwargs in dpmsolver_multistep * Ugly workaround to accept deprecated predict_epsilon when loading schedulers using from_pretrained. * make style * Remove import no longer in use. * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Use config.prediction_type everywhere * Add a couple of Flax prediction type tests. * make style * fix register deprecated arg Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 24 Nov, 2022 1 commit
-
-
Suraj Patil authored
* add v prediction * adat euler for v pred * velocity -> v_prediction * simplify * fix naming * Update src/diffusers/schedulers/scheduling_euler_discrete.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * style Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-