1. 09 May, 2024 1 commit
  2. 29 Apr, 2024 1 commit
  3. 21 Mar, 2024 1 commit
  4. 19 Mar, 2024 1 commit
  5. 18 Mar, 2024 2 commits
    • M. Tolga Cangöz's avatar
      e97a633b
    • M. Tolga Cangöz's avatar
      Fix Typos (#7325) · 6a05b274
      M. Tolga Cangöz authored
      * Fix PyTorch's convention for inplace functions
      
      * Fix import structure in __init__.py and update config loading logic in test_config.py
      
      * Update configuration access
      
      * Fix typos
      
      * Trim trailing white spaces
      
      * Fix typo in logger name
      
      * Revert "Fix PyTorch's convention for inplace functions"
      
      This reverts commit f65dc4afcb57ceb43d5d06389229d47bafb10d2d.
      
      * Fix typo in step_index property description
      
      * Revert "Update configuration access"
      
      This reverts commit 8d44e870b8c1ad08802e3e904c34baeca1b598f8.
      
      * Revert "Fix import structure in __init__.py and update config loading logic in test_config.py"
      
      This reverts commit 2ad5e8bca25aede3b912da22bd57285b598fe171.
      
      * Fix typos
      
      * Fix typos
      
      * Fix typos
      
      * Fix a typo: tranform -> transform
      6a05b274
  6. 14 Mar, 2024 1 commit
  7. 04 Mar, 2024 1 commit
    • Thiago Crepaldi's avatar
      Enable PyTorch's FakeTensorMode for EulerDiscreteScheduler scheduler (#7151) · ca6cdc77
      Thiago Crepaldi authored
      * Enable FakeTensorMode for EulerDiscreteScheduler scheduler
      
      PyTorch's FakeTensorMode does not support `.numpy()` or `numpy.array()`
      calls.
      
      This PR replaces `sigmas` numpy tensor by a PyTorch tensor equivalent
      
      Repro
      
      ```python
      with torch._subclasses.FakeTensorMode() as fake_mode, ONNXTorchPatcher():
          fake_model = DiffusionPipeline.from_pretrained(model_name, low_cpu_mem_usage=False)
      ```
      
      that otherwise would fail with
      `RuntimeError: .numpy() is not supported for tensor subclasses.`
      
      * Address comments
      ca6cdc77
  8. 08 Feb, 2024 1 commit
  9. 01 Feb, 2024 1 commit
  10. 26 Jan, 2024 1 commit
  11. 15 Dec, 2023 1 commit
  12. 07 Dec, 2023 1 commit
  13. 06 Dec, 2023 3 commits
    • Ian's avatar
      bf7f9b49
    • Patrick von Platen's avatar
      [Euler Discrete] Fix sigma (#6078) · 2243a594
      Patrick von Platen authored
      * [Euler Discrete] Fix sigma
      
      * make style
      2243a594
    • Sayak Paul's avatar
      [feat] allow SDXL pipeline to run with fused QKV projections (#6030) · a2bc2e14
      Sayak Paul authored
      
      
      * debug
      
      * from step
      
      * print
      
      * turn sigma a list
      
      * make str
      
      * init_noise_sigma
      
      * comment
      
      * remove prints
      
      * feat: introduce fused projections
      
      * change to a better name
      
      * no grad
      
      * device.
      
      * device
      
      * dtype
      
      * okay
      
      * print
      
      * more print
      
      * fix: unbind -> split
      
      * fix: qkv >-> k
      
      * enable disable
      
      * apply attention processor within the method
      
      * attn processors
      
      * _enable_fused_qkv_projections
      
      * remove print
      
      * add fused projection to vae
      
      * add todos.
      
      * add: documentation and cleanups.
      
      * add: test for qkv projection fusion.
      
      * relax assertions.
      
      * relax further
      
      * fix: docs
      
      * fix-copies
      
      * correct error message.
      
      * Empty-Commit
      
      * better conditioning on disable_fused_qkv_projections
      
      * check
      
      * check processor
      
      * bfloat16 computation.
      
      * check latent dtype
      
      * style
      
      * remove copy temporarily
      
      * cast latent to bfloat16
      
      * fix: vae -> self.vae
      
      * remove print.
      
      * add _change_to_group_norm_32
      
      * comment out stuff that didn't work
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * reflect patrick's suggestions.
      
      * fix imports
      
      * fix: disable call.
      
      * fix more
      
      * fix device and dtype
      
      * fix conditions.
      
      * fix more
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      a2bc2e14
  14. 29 Nov, 2023 1 commit
    • Suraj Patil's avatar
      Add SVD (#5895) · 63f767ef
      Suraj Patil authored
      
      
      * begin model
      
      * finish blocks
      
      * add_embedding
      
      * addition_time_embed_dim
      
      * use TimestepEmbedding
      
      * fix temporal res block
      
      * fix time_pos_embed
      
      * fix add_embedding
      
      * add conversion script
      
      * fix model
      
      * up
      
      * add new resnet blocks
      
      * make forward work
      
      * return sample in original shape
      
      * fix temb shape in TemporalResnetBlock
      
      * add spatio temporal transformers
      
      * add vae blocks
      
      * fix blocks
      
      * update
      
      * update
      
      * fix shapes in Alphablender and add time activation in res blcok
      
      * use new blocks
      
      * style
      
      * fix temb shape
      
      * fix SpatioTemporalResBlock
      
      * reuse TemporalBasicTransformerBlock
      
      * fix TemporalBasicTransformerBlock
      
      * use TransformerSpatioTemporalModel
      
      * fix TransformerSpatioTemporalModel
      
      * fix time_context dim
      
      * clean up
      
      * make temb optional
      
      * add blocks
      
      * rename model
      
      * update conversion script
      
      * remove UNetMidBlockSpatioTemporal
      
      * add in init
      
      * remove unused arg
      
      * remove unused arg
      
      * remove more unsed args
      
      * up
      
      * up
      
      * check for None
      
      * update vae
      
      * update up/mid blocks for decoder
      
      * begin pipeline
      
      * adapt scheduler
      
      * add guidance scalings
      
      * fix norm eps in temporal transformers
      
      * add temporal autoencoder
      
      * make pipeline run
      
      * fix frame decodig
      
      * decode in float32
      
      * decode n frames at a time
      
      * pass decoding_t to decode_latents
      
      * fix decode_latents
      
      * vae encode/decode in fp32
      
      * fix dtype in TransformerSpatioTemporalModel
      
      * type image_latents same as image_embeddings
      
      * allow using differnt eps in temporal block for video decoder
      
      * fix default values in vae
      
      * pass num frames in decode
      
      * switch spatial to temporal for mixing in VAE
      
      * fix num frames during split decoding
      
      * cast alpha to sample dtype
      
      * fix attention in MidBlockTemporalDecoder
      
      * fix typo
      
      * fix guidance_scales dtype
      
      * fix missing activation in TemporalDecoder
      
      * skip_post_quant_conv
      
      * add vae conversion
      
      * style
      
      * take guidance scale as input
      
      * up
      
      * allow passing PIL to export_video
      
      * accept fps as arg
      
      * add pipeline and vae in init
      
      * remove hack
      
      * use AutoencoderKLTemporalDecoder
      
      * don't scale image latents
      
      * add unet tests
      
      * clean up unet
      
      * clean TransformerSpatioTemporalModel
      
      * add slow svd test
      
      * clean up
      
      * make temb optional in Decoder mid block
      
      * fix norm eps in TransformerSpatioTemporalModel
      
      * clean up temp decoder
      
      * clean up
      
      * clean up
      
      * use c_noise values for timesteps
      
      * use math for log
      
      * update
      
      * fix copies
      
      * doc
      
      * upcast vae
      
      * update forward pass for gradient checkpointing
      
      * make added_time_ids is tensor
      
      * up
      
      * fix upcasting
      
      * remove post quant conv
      
      * add _resize_with_antialiasing
      
      * fix _compute_padding
      
      * cleanup model
      
      * more cleanup
      
      * more cleanup
      
      * more cleanup
      
      * remove freeu
      
      * remove attn slice
      
      * small clean
      
      * up
      
      * up
      
      * remove extra step kwargs
      
      * remove eta
      
      * remove dropout
      
      * remove callback
      
      * remove merge factor args
      
      * clean
      
      * clean up
      
      * move to dedicated folder
      
      * remove attention_head_dim
      
      * docstr and small fix
      
      * update unet doc strings
      
      * rename decoding_t
      
      * correct linting
      
      * store c_skip and c_out
      
      * cleanup
      
      * clean TemporalResnetBlock
      
      * more cleanup
      
      * clean up vae
      
      * clean up
      
      * begin doc
      
      * more cleanup
      
      * up
      
      * up
      
      * doc
      
      * Improve
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * better naming
      
      * Apply suggestions from code review
      
      * Default chunk size to None
      
      * add example
      
      * Better
      
      * Apply suggestions from code review
      
      * update doc
      
      * Update src/diffusers/pipelines/stable_diffusion_video/pipeline_stable_diffusion_video.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * style
      
      * Get torch compile working
      
      * up
      
      * rename
      
      * fix doc
      
      * add chunking
      
      * torch compile
      
      * torch compile
      
      * add modelling outputs
      
      * torch compile
      
      * Improve chunking
      
      * Apply suggestions from code review
      
      * Update docs/source/en/using-diffusers/svd.md
      
      * Close diff tag
      
      * remove slicing
      
      * resnet docstr
      
      * add docstr in resnet
      
      * rename
      
      * Apply suggestions from code review
      
      * update tests
      
      * Fix output type latents
      
      * fix more
      
      * fix more
      
      * Update docs/source/en/using-diffusers/svd.md
      
      * fix more
      
      * add pipeline tests
      
      * remove unused arg
      
      * clean  up
      
      * make sure get_scaling receives tensors
      
      * fix euler scheduler
      
      * fix get_scalings
      
      * simply euler for now
      
      * remove old test file
      
      * use randn_tensor to create noise
      
      * fix device for rand tensor
      
      * increase expected_max_difference
      
      * fix test_inference_batch_single_identical
      
      * actually fix test_inference_batch_single_identical
      
      * disable test_save_load_float16
      
      * skip test_float16_inference
      
      * skip test_inference_batch_single_identical
      
      * fix test_xformers_attention_forwardGenerator_pass
      
      * Apply suggestions from code review
      
      * update StableVideoDiffusionPipelineSlowTests
      
      * update image
      
      * add diffusers example
      
      * fix more
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarapolinário <joaopaulo.passos@gmail.com>
      63f767ef
  15. 20 Nov, 2023 1 commit
  16. 31 Oct, 2023 1 commit
  17. 11 Sep, 2023 1 commit
    • Dhruv Nair's avatar
      Lazy Import for Diffusers (#4829) · b6e0b016
      Dhruv Nair authored
      
      
      * initial commit
      
      * move modules to import struct
      
      * add dummy objects and _LazyModule
      
      * add lazy import to schedulers
      
      * clean up unused imports
      
      * lazy import on models module
      
      * lazy import for schedulers module
      
      * add lazy import to pipelines module
      
      * lazy import altdiffusion
      
      * lazy import audio diffusion
      
      * lazy import audioldm
      
      * lazy import consistency model
      
      * lazy import controlnet
      
      * lazy import dance diffusion ddim ddpm
      
      * lazy import deepfloyd
      
      * lazy import kandinksy
      
      * lazy imports
      
      * lazy import semantic diffusion
      
      * lazy imports
      
      * lazy import stable diffusion
      
      * move sd output to its own module
      
      * clean up
      
      * lazy import t2iadapter
      
      * lazy import unclip
      
      * lazy import versatile and vq diffsuion
      
      * lazy import vq diffusion
      
      * helper to fetch objects from modules
      
      * lazy import sdxl
      
      * lazy import txt2vid
      
      * lazy import stochastic karras
      
      * fix model imports
      
      * fix bug
      
      * lazy import
      
      * clean up
      
      * clean up
      
      * fixes for tests
      
      * fixes for tests
      
      * clean up
      
      * remove import of torch_utils from utils module
      
      * clean up
      
      * clean up
      
      * fix mistake import statement
      
      * dedicated modules for exporting and loading
      
      * remove testing utils from utils module
      
      * fixes from  merge conflicts
      
      * Update src/diffusers/pipelines/kandinsky2_2/__init__.py
      
      * fix docs
      
      * fix alt diffusion copied from
      
      * fix check dummies
      
      * fix more docs
      
      * remove accelerate import from utils module
      
      * add type checking
      
      * make style
      
      * fix check dummies
      
      * remove torch import from xformers check
      
      * clean up error message
      
      * fixes after upstream merges
      
      * dummy objects fix
      
      * fix tests
      
      * remove unused module import
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      b6e0b016
  18. 23 Aug, 2023 1 commit
  19. 09 Aug, 2023 1 commit
    • Steven Liu's avatar
      [docs] Clean scheduler api (#4204) · 16ad13b6
      Steven Liu authored
      * clean scheduler mixin
      
      * up to dpmsolvermultistep
      
      * finish cleaning
      
      * first draft
      
      * fix overview table
      
      * apply feedback
      
      * update reference code
      16ad13b6
  20. 06 Jul, 2023 1 commit
    • YiYi Xu's avatar
      Add Shap-E (#3742) · 45f6d52b
      YiYi Xu authored
      
      
      * refactor prior_transformer
      
      adding conversion script
      
      add pipeline
      
      add step_index from pipeline, + remove permute
      
      add zero pad token
      
      remove copy from statement for betas_for_alpha_bar function
      
      * add
      
      * add
      
      * update conversion script for renderer model
      
      * refactor camera a little bit
      
      * clean up
      
      * style
      
      * fix copies
      
      * Update src/diffusers/schedulers/scheduling_heun_discrete.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * alpha_transform_type
      
      * remove step_index argument
      
      * remove get_sigmas_karras
      
      * remove _yiyi_sigma_to_t
      
      * move the rescale prompt_embeds from prior_transformer to pipeline
      
      * replace baddbmm with einsum to match origial repo
      
      * Revert "replace baddbmm with einsum to match origial repo"
      
      This reverts commit 3f6b435d65dad3e5514cad2f5dd9e4419ca78e0b.
      
      * add step_index to scale_model_input
      
      * Revert "move the rescale prompt_embeds from prior_transformer to pipeline"
      
      This reverts commit 5b5a8e6be918fefd114a2945ed89d8e8fa8be21b.
      
      * move rescale from prior_transformer to pipeline
      
      * correct step_index in scale_model_input
      
      * remove print lines
      
      * refactor prior - reduce arguments
      
      * make style
      
      * add prior_image
      
      * arg embedding_proj_norm -> norm_embedding_proj
      
      * add pre-norm for proj_embedding
      
      * move rescale prompt from pipeline to _encode_prompt
      
      * add img2img pipeline
      
      * style
      
      * copies
      
      * Update src/diffusers/models/prior_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      
      add arg: encoder_hid_proj
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      
      add new config: norm_in_type
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      
      add new config: added_emb_type
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      
      rename out_dim -> clip_embed_dim
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      
      rename config: out_dim -> clip_embed_dim
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/models/prior_transformer.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * finish refactor prior_tranformer
      
      * make style
      
      * refactor renderer
      
      * fix
      
      * make style
      
      * refactor img2img
      
      * remove params_proj
      
      * add test
      
      * add upcast_softmax to prior_transformer
      
      * enable num_images_per_prompt, add save_gif utility
      
      * add
      
      * add fast test
      
      * make style
      
      * add slow test
      
      * style
      
      * add test for img2img
      
      * refactor
      
      * enable batching
      
      * style
      
      * refactor scheduler
      
      * update test
      
      * style
      
      * attempt to solve batch related tests timeout
      
      * add doc
      
      * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * hardcode rendering related config
      
      * update betas_for_alpha_bar on ddpm_scheduler
      
      * fix copies
      
      * fix
      
      * export_to_gif
      
      * style
      
      * second attempt to speed up batching tests
      
      * add doc page to index
      
      * Remove intermediate clipping
      
      * 3rd attempt to speed up batching tests
      
      * Remvoe time index
      
      * simplify scheduler
      
      * Fix more
      
      * Fix more
      
      * fix more
      
      * make style
      
      * fix schedulers
      
      * fix some more tests
      
      * finish
      
      * add one more test
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * style
      
      * apply feedbacks
      
      * style
      
      * fix copies
      
      * add one example
      
      * style
      
      * add example for img2img
      
      * fix doc
      
      * fix more doc strings
      
      * size -> frame_size
      
      * style
      
      * update doc
      
      * style
      
      * fix on doc
      
      * update repo name
      
      * improve the usage example in shap-e img2img
      
      * add usage examples in the shap-e docs.
      
      * consolidate examples.
      
      * minor fix.
      
      * update doc
      
      * Apply suggestions from code review
      
      * Apply suggestions from code review
      
      * remove upcast
      
      * Make sure background is white
      
      * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py
      
      * Apply suggestions from code review
      
      * Finish
      
      * Apply suggestions from code review
      
      * Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py
      
      * Make style
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu310@gmail,com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      45f6d52b
  21. 05 Jul, 2023 1 commit
    • Pedro Cuenca's avatar
      Add `timestep_spacing` and `steps_offset` to schedulers (#3947) · 07c9a08e
      Pedro Cuenca authored
      
      
      * Add timestep_spacing to DDPM, LMSDiscrete, PNDM.
      
      * Remove spurious line.
      
      * More easy schedulers.
      
      * Add `linspace` to DDIM
      
      * Noise sigma for `trailing`.
      
      * Add timestep_spacing to DEISMultistepScheduler.
      
      Not sure the range is the way it was intended.
      
      * Fix: remove line used to debug.
      
      * Support timestep_spacing in DPMSolverMultistep, DPMSolverSDE, UniPC
      
      * Fix: convert to numpy.
      
      * Use sched. defaults when instantiating from_config
      
      For params not present in the original configuration.
      
      This makes it possible to switch pipeline schedulers even if they use
      different timestep_spacing (or any other param).
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Missing args in DPMSolverMultistep
      
      * Test: default args not in config
      
      * Style
      
      * Fix scheduler name in test
      
      * Remove duplicated entries
      
      * Add test for solver_type
      
      This test currently fails in main. When switching from DEIS to UniPC,
      solver_type is "logrho" (the default value from DEIS), which gets
      translated to "bh1" by UniPC. This is different to the default value for
      UniPC: "bh2". This is where the translation happens: https://github.com/huggingface/diffusers/blob/36d22d0709dc19776e3016fb3392d0f5578b0ab2/src/diffusers/schedulers/scheduling_unipc_multistep.py#L171
      
      
      
      * UniPC: use same default for solver_type
      
      Fixes a bug when switching from UniPC from another scheduler (i.e.,
      DEIS) that uses a different solver type. The solver is now the same as
      if we had instantiated the scheduler directly.
      
      * do not save use default values
      
      * fix more
      
      * fix all
      
      * fix schedulers
      
      * fix more
      
      * finish for real
      
      * finish for real
      
      * flaky tests
      
      * Update tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py
      
      * Default steps_offset to 0.
      
      * Add missing docstrings
      
      * Apply suggestions from code review
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      07c9a08e
  22. 12 Apr, 2023 1 commit
  23. 10 Apr, 2023 1 commit
  24. 06 Apr, 2023 1 commit
  25. 01 Mar, 2023 1 commit
  26. 16 Feb, 2023 1 commit
  27. 07 Feb, 2023 1 commit
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  28. 27 Jan, 2023 2 commits
  29. 17 Jan, 2023 1 commit
    • Kashif Rasul's avatar
      DiT Pipeline (#1806) · 37d113cc
      Kashif Rasul authored
      
      
      * added dit model
      
      * import
      
      * initial pipeline
      
      * initial convert script
      
      * initial pipeline
      
      * make style
      
      * raise valueerror
      
      * single function
      
      * rename classes
      
      * use DDIMScheduler
      
      * timesteps embedder
      
      * samples to cpu
      
      * fix var names
      
      * fix numpy type
      
      * use timesteps class for proj
      
      * fix typo
      
      * fix arg name
      
      * flip_sin_to_cos and better var names
      
      * fix C shape cal
      
      * make style
      
      * remove unused imports
      
      * cleanup
      
      * add back patch_size
      
      * initial dit doc
      
      * typo
      
      * Update docs/source/api/pipelines/dit.mdx
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * added copyright license headers
      
      * added example usage and toc
      
      * fix variable names asserts
      
      * remove comment
      
      * added docs
      
      * fix typo
      
      * upstream changes
      
      * set proper device for drop_ids
      
      * added initial dit pipeline test
      
      * update docs
      
      * fix imports
      
      * make fix-copies
      
      * isort
      
      * fix imports
      
      * get rid of more magic numbers
      
      * fix code when guidance is off
      
      * remove block_kwargs
      
      * cleanup script
      
      * removed to_2tuple
      
      * use FeedForward class instead of another MLP
      
      * style
      
      * work on mergint DiTBlock with BasicTransformerBlock
      
      * added missing final_dropout and args to BasicTransformerBlock
      
      * use norm from block
      
      * fix arg
      
      * remove unused arg
      
      * fix call to class_embedder
      
      * use timesteps
      
      * make style
      
      * attn_output gets multiplied
      
      * removed commented code
      
      * use Transformer2D
      
      * use self.is_input_patches
      
      * fix flags
      
      * fixed conversion to use Transformer2DModel
      
      * fixes for pipeline
      
      * remove dit.py
      
      * fix timesteps device
      
      * use randn_tensor and fix fp16 inf.
      
      * timesteps_emb already the right dtype
      
      * fix dit test class
      
      * fix test and style
      
      * fix norm2 usage in vq-diffusion
      
      * added author names to pipeline and lmagenet labels link
      
      * fix tests
      
      * use norm_type as string
      
      * rename dit to transformer
      
      * fix name
      
      * fix test
      
      * set  norm_type = "layer" by default
      
      * fix tests
      
      * do not skip common tests
      
      * Update src/diffusers/models/attention.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * revert AdaLayerNorm API
      
      * fix norm_type name
      
      * make sure all components are in eval mode
      
      * revert norm2 API
      
      * compact
      
      * finish deprecation
      
      * add slow tests
      
      * remove @
      
      * refactor some stuff
      
      * upload
      
      * Update src/diffusers/pipelines/dit/pipeline_dit.py
      
      * finish more
      
      * finish docs
      
      * improve docs
      
      * finish docs
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      37d113cc
  30. 16 Jan, 2023 1 commit
  31. 04 Jan, 2023 1 commit
    • Patrick von Platen's avatar
      Improve reproduceability 2/3 (#1906) · 9b638548
      Patrick von Platen authored
      * [Repro] Correct reproducability
      
      * up
      
      * up
      
      * uP
      
      * up
      
      * need better image
      
      * allow conversion from no state dict checkpoints
      
      * up
      
      * up
      
      * up
      
      * up
      
      * check tensors
      
      * check tensors
      
      * check tensors
      
      * check tensors
      
      * next try
      
      * up
      
      * up
      
      * better name
      
      * up
      
      * up
      
      * Apply suggestions from code review
      
      * correct more
      
      * up
      
      * replace all torch randn
      
      * fix
      
      * correct
      
      * correct
      
      * finish
      
      * fix more
      
      * up
      9b638548
  32. 02 Dec, 2022 1 commit
  33. 30 Nov, 2022 1 commit
  34. 28 Nov, 2022 1 commit
    • Patrick von Platen's avatar
      Add 2nd order heun scheduler (#1336) · 4c54519e
      Patrick von Platen authored
      * Add heun
      
      * Finish first version of heun
      
      * remove bogus
      
      * finish
      
      * finish
      
      * improve
      
      * up
      
      * up
      
      * fix more
      
      * change progress bar
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
      
      * finish
      
      * up
      
      * up
      
      * up
      4c54519e
  35. 25 Nov, 2022 1 commit
    • Pedro Cuenca's avatar
      Deprecate `predict_epsilon` (#1393) · d52388f4
      Pedro Cuenca authored
      
      
      * Adapt ddpm, ddpmsolver to prediction_type.
      
      * Deprecate predict_epsilon in __init__.
      
      * Bring FlaxDDIMScheduler up to date with DDIMScheduler.
      
      * Set prediction_type as an ivar for consistency.
      
      * Convert pipeline_ddpm
      
      * Adapt tests.
      
      * Adapt unconditional training script.
      
      * Adapt BitDiffusion example.
      
      * Add missing kwargs in dpmsolver_multistep
      
      * Ugly workaround to accept deprecated predict_epsilon when loading
      schedulers using from_pretrained.
      
      * make style
      
      * Remove import no longer in use.
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Use config.prediction_type everywhere
      
      * Add a couple of Flax prediction type tests.
      
      * make style
      
      * fix register deprecated arg
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      d52388f4
  36. 24 Nov, 2022 1 commit