Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
c25582d5
Unverified
Commit
c25582d5
authored
Dec 01, 2025
by
David El Malih
Committed by
GitHub
Dec 01, 2025
Browse files
[Docs] Update Imagen Video paper link in schedulers (#12724)
docs: Update Imagen Video paper link in scheduler docstrings.
parent
6156cf8f
Changes
26
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
20 additions
and
20 deletions
+20
-20
src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py
...users/schedulers/scheduling_cosine_dpmsolver_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_ddim_cogvideox.py
src/diffusers/schedulers/scheduling_ddim_cogvideox.py
+1
-1
src/diffusers/schedulers/scheduling_ddim_inverse.py
src/diffusers/schedulers/scheduling_ddim_inverse.py
+1
-1
src/diffusers/schedulers/scheduling_ddim_parallel.py
src/diffusers/schedulers/scheduling_ddim_parallel.py
+1
-1
src/diffusers/schedulers/scheduling_ddpm.py
src/diffusers/schedulers/scheduling_ddpm.py
+1
-1
src/diffusers/schedulers/scheduling_ddpm_parallel.py
src/diffusers/schedulers/scheduling_ddpm_parallel.py
+1
-1
src/diffusers/schedulers/scheduling_deis_multistep.py
src/diffusers/schedulers/scheduling_deis_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_dpm_cogvideox.py
src/diffusers/schedulers/scheduling_dpm_cogvideox.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
...sers/schedulers/scheduling_dpmsolver_multistep_inverse.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
+1
-1
src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
...iffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_edm_euler.py
src/diffusers/schedulers/scheduling_edm_euler.py
+1
-1
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
...ffusers/schedulers/scheduling_euler_ancestral_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_euler_discrete.py
src/diffusers/schedulers/scheduling_euler_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_euler_discrete_flax.py
src/diffusers/schedulers/scheduling_euler_discrete_flax.py
+1
-1
src/diffusers/schedulers/scheduling_heun_discrete.py
src/diffusers/schedulers/scheduling_heun_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
...users/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_lcm.py
src/diffusers/schedulers/scheduling_lcm.py
+1
-1
No files found.
src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py
View file @
c25582d5
...
...
@@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `v_prediction`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
...
...
src/diffusers/schedulers/scheduling_ddim_cogvideox.py
View file @
c25582d5
...
...
@@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_ddim_inverse.py
View file @
c25582d5
...
...
@@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_ddim_parallel.py
View file @
c25582d5
...
...
@@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://
imagen.research.google/video/paper.pdf
)
https://
huggingface.co/papers/2210.02303
)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
...
...
src/diffusers/schedulers/scheduling_ddpm.py
View file @
c25582d5
...
...
@@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_ddpm_parallel.py
View file @
c25582d5
...
...
@@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://
imagen.research.google/video/paper.pdf
)
https://
huggingface.co/papers/2210.02303
)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
...
...
src/diffusers/schedulers/scheduling_deis_multistep.py
View file @
c25582d5
...
...
@@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_dpm_cogvideox.py
View file @
c25582d5
...
...
@@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
View file @
c25582d5
...
...
@@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
View file @
c25582d5
...
...
@@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
...
...
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
View file @
c25582d5
...
...
@@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
View file @
c25582d5
...
...
@@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_edm_euler.py
View file @
c25582d5
...
...
@@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
rho (`float`, *optional*, defaults to 7.0):
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
final_sigmas_type (`str`, defaults to `"zero"`):
...
...
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
View file @
c25582d5
...
...
@@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_euler_discrete.py
View file @
c25582d5
...
...
@@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*):
Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion
process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*):
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of
`"linear"` or `"log_linear"`.
...
...
src/diffusers/schedulers/scheduling_euler_discrete_flax.py
View file @
c25582d5
...
...
@@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://
imagen.research.google/video/paper.pdf
)
https://
huggingface.co/papers/2210.02303
)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
"""
...
...
src/diffusers/schedulers/scheduling_heun_discrete.py
View file @
c25582d5
...
...
@@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
...
...
src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
View file @
c25582d5
...
...
@@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
View file @
c25582d5
...
...
@@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_lcm.py
View file @
c25582d5
...
...
@@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment