Unverified Commit 0d1c5b0c authored by sqt's avatar sqt Committed by GitHub
Browse files

Fix typo: 'will ge generated' -> 'will be generated' (#12231)

parent 0e46c559
...@@ -775,7 +775,7 @@ class FluxFillPipeline( ...@@ -775,7 +775,7 @@ class FluxFillPipeline(
1)`, or `(H, W)`. 1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`): mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will ge generated by `mask_image`. latents tensor will be generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results. The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
...@@ -807,7 +807,7 @@ class FluxFillPipeline( ...@@ -807,7 +807,7 @@ class FluxFillPipeline(
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -787,7 +787,7 @@ class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile ...@@ -787,7 +787,7 @@ class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -834,7 +834,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM ...@@ -834,7 +834,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM
1)`, or `(H, W)`. 1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`): mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will ge generated by `mask_image`. latents tensor will be generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results. The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
...@@ -873,7 +873,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM ...@@ -873,7 +873,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -808,7 +808,7 @@ class FluxKontextPipeline( ...@@ -808,7 +808,7 @@ class FluxKontextPipeline(
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -1029,7 +1029,7 @@ class FluxKontextInpaintPipeline( ...@@ -1029,7 +1029,7 @@ class FluxKontextInpaintPipeline(
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -789,7 +789,7 @@ class HiDreamImagePipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin): ...@@ -789,7 +789,7 @@ class HiDreamImagePipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin):
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -291,7 +291,7 @@ class KandinskyPipeline(DiffusionPipeline): ...@@ -291,7 +291,7 @@ class KandinskyPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -271,7 +271,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline): ...@@ -271,7 +271,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
...@@ -502,7 +502,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline): ...@@ -502,7 +502,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
...@@ -742,7 +742,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline): ...@@ -742,7 +742,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -469,7 +469,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline): ...@@ -469,7 +469,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -212,7 +212,7 @@ class KandinskyPriorPipeline(DiffusionPipeline): ...@@ -212,7 +212,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*): negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`). `guidance_scale` is less than `1`).
...@@ -437,7 +437,7 @@ class KandinskyPriorPipeline(DiffusionPipeline): ...@@ -437,7 +437,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0): guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
......
...@@ -175,7 +175,7 @@ class KandinskyV22Pipeline(DiffusionPipeline): ...@@ -175,7 +175,7 @@ class KandinskyV22Pipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -262,7 +262,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline): ...@@ -262,7 +262,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
...@@ -512,7 +512,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline): ...@@ -512,7 +512,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
...@@ -749,7 +749,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline): ...@@ -749,7 +749,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -211,7 +211,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline): ...@@ -211,7 +211,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -356,7 +356,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline): ...@@ -356,7 +356,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`): output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`). (`np.array`) or `"pt"` (`torch.Tensor`).
......
...@@ -171,7 +171,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline): ...@@ -171,7 +171,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*): negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`). `guidance_scale` is less than `1`).
...@@ -412,7 +412,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline): ...@@ -412,7 +412,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0): guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
......
...@@ -195,7 +195,7 @@ class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline): ...@@ -195,7 +195,7 @@ class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*): negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`). `guidance_scale` is less than `1`).
......
...@@ -749,7 +749,7 @@ class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionLor ...@@ -749,7 +749,7 @@ class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionLor
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*): prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -900,7 +900,7 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu ...@@ -900,7 +900,7 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*): prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -679,7 +679,7 @@ class LattePipeline(DiffusionPipeline): ...@@ -679,7 +679,7 @@ class LattePipeline(DiffusionPipeline):
latents (`torch.FloatTensor`, *optional*): latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
...@@ -601,7 +601,7 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi ...@@ -601,7 +601,7 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
latents (`torch.Tensor`, *optional*): latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`. tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*): prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. provided, text embeddings will be generated from `prompt` input argument.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment