Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
0d1c5b0c
"vscode:/vscode.git/clone" did not exist on "7a80f56513752e2ed63beed542daaf28119cd89a"
Unverified
Commit
0d1c5b0c
authored
Aug 26, 2025
by
sqt
Committed by
GitHub
Aug 25, 2025
Browse files
Fix typo: 'will ge generated' -> 'will be generated' (#12231)
parent
0e46c559
Changes
145
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
28 additions
and
28 deletions
+28
-28
src/diffusers/pipelines/flux/pipeline_flux_fill.py
src/diffusers/pipelines/flux/pipeline_flux_fill.py
+2
-2
src/diffusers/pipelines/flux/pipeline_flux_img2img.py
src/diffusers/pipelines/flux/pipeline_flux_img2img.py
+1
-1
src/diffusers/pipelines/flux/pipeline_flux_inpaint.py
src/diffusers/pipelines/flux/pipeline_flux_inpaint.py
+2
-2
src/diffusers/pipelines/flux/pipeline_flux_kontext.py
src/diffusers/pipelines/flux/pipeline_flux_kontext.py
+1
-1
src/diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py
...diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py
+1
-1
src/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
...ffusers/pipelines/hidream_image/pipeline_hidream_image.py
+1
-1
src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py
src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py
+1
-1
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py
...fusers/pipelines/kandinsky/pipeline_kandinsky_combined.py
+3
-3
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
...ffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
+1
-1
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
...diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
+2
-2
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
...diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
+1
-1
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py
.../pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py
+3
-3
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py
...ipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py
+1
-1
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py
...ipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py
+1
-1
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py
...ers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py
+2
-2
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py
...lines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py
+1
-1
src/diffusers/pipelines/kolors/pipeline_kolors.py
src/diffusers/pipelines/kolors/pipeline_kolors.py
+1
-1
src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py
src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py
+1
-1
src/diffusers/pipelines/latte/pipeline_latte.py
src/diffusers/pipelines/latte/pipeline_latte.py
+1
-1
src/diffusers/pipelines/ltx/pipeline_ltx.py
src/diffusers/pipelines/ltx/pipeline_ltx.py
+1
-1
No files found.
src/diffusers/pipelines/flux/pipeline_flux_fill.py
View file @
0d1c5b0c
...
...
@@ -775,7 +775,7 @@ class FluxFillPipeline(
1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will
g
e generated by `mask_image`.
latents tensor will
b
e generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
...
...
@@ -807,7 +807,7 @@ class FluxFillPipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/flux/pipeline_flux_img2img.py
View file @
0d1c5b0c
...
...
@@ -787,7 +787,7 @@ class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/flux/pipeline_flux_inpaint.py
View file @
0d1c5b0c
...
...
@@ -834,7 +834,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM
1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will
g
e generated by `mask_image`.
latents tensor will
b
e generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
...
...
@@ -873,7 +873,7 @@ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FluxIPAdapterM
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/flux/pipeline_flux_kontext.py
View file @
0d1c5b0c
...
...
@@ -808,7 +808,7 @@ class FluxKontextPipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py
View file @
0d1c5b0c
...
...
@@ -1029,7 +1029,7 @@ class FluxKontextInpaintPipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
View file @
0d1c5b0c
...
...
@@ -789,7 +789,7 @@ class HiDreamImagePipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin):
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py
View file @
0d1c5b0c
...
...
@@ -291,7 +291,7 @@ class KandinskyPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py
View file @
0d1c5b0c
...
...
@@ -271,7 +271,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
@@ -502,7 +502,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
@@ -742,7 +742,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
View file @
0d1c5b0c
...
...
@@ -469,7 +469,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
View file @
0d1c5b0c
...
...
@@ -212,7 +212,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`).
...
...
@@ -437,7 +437,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
View file @
0d1c5b0c
...
...
@@ -175,7 +175,7 @@ class KandinskyV22Pipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py
View file @
0d1c5b0c
...
...
@@ -262,7 +262,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
@@ -512,7 +512,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
@@ -749,7 +749,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py
View file @
0d1c5b0c
...
...
@@ -211,7 +211,7 @@ class KandinskyV22ControlnetPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py
View file @
0d1c5b0c
...
...
@@ -356,7 +356,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py
View file @
0d1c5b0c
...
...
@@ -171,7 +171,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`).
...
...
@@ -412,7 +412,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py
View file @
0d1c5b0c
...
...
@@ -195,7 +195,7 @@ class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
negative_prior_prompt (`str`, *optional*):
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
`guidance_scale` is less than `1`).
...
...
src/diffusers/pipelines/kolors/pipeline_kolors.py
View file @
0d1c5b0c
...
...
@@ -749,7 +749,7 @@ class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionLor
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py
View file @
0d1c5b0c
...
...
@@ -900,7 +900,7 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/latte/pipeline_latte.py
View file @
0d1c5b0c
...
...
@@ -679,7 +679,7 @@ class LattePipeline(DiffusionPipeline):
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
src/diffusers/pipelines/ltx/pipeline_ltx.py
View file @
0d1c5b0c
...
...
@@ -601,7 +601,7 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment