attention2d.py 9.02 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# unet_grad_tts.py
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        #        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        #        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

# unet.py
class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)  # b,hw,c
        k = k.reshape(b, c, h * w)  # b,c,hw
        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b, c, h, w)

        h_ = self.proj_out(h_)

        return x + h_

# unet_glide.py
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        encoder_channels=None,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels, swish=0.0)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        self.attention = QKVAttention(self.num_heads)

        if encoder_channels is not None:
            self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x, encoder_out=None):
        b, c, *spatial = x.shape
        qkv = self.qkv(self.norm(x).view(b, c, -1))
        if encoder_out is not None:
            encoder_out = self.encoder_kv(encoder_out)
            h = self.attention(qkv, encoder_out)
        else:
            h = self.attention(qkv)
        h = self.proj_out(h)
        return x + h.reshape(b, c, *spatial)

class QKVAttention(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv, encoder_kv=None):
        """
        Apply QKV attention.

        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after
        attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        if encoder_kv is not None:
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)


# unet_ldm.py
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        use_new_attention_order=False,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        # split heads before split qkv
        self.attention = QKVAttentionLegacy(self.num_heads)

        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x):
        b, c, *spatial = x.shape
        x = x.reshape(b, c, -1)
        qkv = self.qkv(self.norm(x))
        h = self.attention(qkv)
        h = self.proj_out(h)
        return (x + h).reshape(b, c, *spatial)

class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x
        T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)

# unet_score_estimation.py
class AttnBlockpp(nn.Module):
    """Channel-wise self-attention block. Modified from DDPM."""

    def __init__(self, channels, skip_rescale=False, init_scale=0.0):
        super().__init__()
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(channels // 4, 32), num_channels=channels, eps=1e-6)
        self.NIN_0 = NIN(channels, channels)
        self.NIN_1 = NIN(channels, channels)
        self.NIN_2 = NIN(channels, channels)
        self.NIN_3 = NIN(channels, channels, init_scale=init_scale)
        self.skip_rescale = skip_rescale

    def forward(self, x):
        B, C, H, W = x.shape
        h = self.GroupNorm_0(x)
        q = self.NIN_0(h)
        k = self.NIN_1(h)
        v = self.NIN_2(h)

        w = torch.einsum("bchw,bcij->bhwij", q, k) * (int(C) ** (-0.5))
        w = torch.reshape(w, (B, H, W, H * W))
        w = F.softmax(w, dim=-1)
        w = torch.reshape(w, (B, H, W, H, W))
        h = torch.einsum("bhwij,bcij->bchw", w, v)
        h = self.NIN_3(h)
        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)