# unet_grad_tts.py class LinearAttention(torch.nn.Module): def __init__(self, dim, heads=4, dim_head=32): super(LinearAttention, self).__init__() self.heads = heads self.dim_head = dim_head hidden_dim = dim_head * heads self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) # q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3) q, k, v = ( qkv.reshape(b, 3, self.heads, self.dim_head, h, w) .permute(1, 0, 2, 3, 4, 5) .reshape(3, b, self.heads, self.dim_head, -1) ) k = k.softmax(dim=-1) context = torch.einsum("bhdn,bhen->bhde", k, v) out = torch.einsum("bhde,bhdn->bhen", context, q) # out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w) out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w) return self.to_out(out) # unet.py class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ # unet_glide.py class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, encoder_channels=None, ): super().__init__() self.channels = channels if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.norm = normalization(channels, swish=0.0) self.qkv = conv_nd(1, channels, channels * 3, 1) self.attention = QKVAttention(self.num_heads) if encoder_channels is not None: self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1) self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) def forward(self, x, encoder_out=None): b, c, *spatial = x.shape qkv = self.qkv(self.norm(x).view(b, c, -1)) if encoder_out is not None: encoder_out = self.encoder_kv(encoder_out) h = self.attention(qkv, encoder_out) else: h = self.attention(qkv) h = self.proj_out(h) return x + h.reshape(b, c, *spatial) class QKVAttention(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, encoder_kv=None): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) if encoder_kv is not None: assert encoder_kv.shape[1] == self.n_heads * ch * 2 ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1) k = torch.cat([ek, k], dim=-1) v = torch.cat([ev, v], dim=-1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) a = torch.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) # unet_ldm.py class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, use_new_attention_order=False, ): super().__init__() self.channels = channels if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.norm = normalization(channels) self.qkv = conv_nd(1, channels, channels * 3, 1) # split heads before split qkv self.attention = QKVAttentionLegacy(self.num_heads) self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) def forward(self, x): b, c, *spatial = x.shape x = x.reshape(b, c, -1) qkv = self.qkv(self.norm(x)) h = self.attention(qkv) h = self.proj_out(h) return (x + h).reshape(b, c, *spatial) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = torch.einsum( "bct,bcs->bts", (q * scale).view(bs * self.n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length), ) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) # unet_score_estimation.py class AttnBlockpp(nn.Module): """Channel-wise self-attention block. Modified from DDPM.""" def __init__(self, channels, skip_rescale=False, init_scale=0.0): super().__init__() self.GroupNorm_0 = nn.GroupNorm(num_groups=min(channels // 4, 32), num_channels=channels, eps=1e-6) self.NIN_0 = NIN(channels, channels) self.NIN_1 = NIN(channels, channels) self.NIN_2 = NIN(channels, channels) self.NIN_3 = NIN(channels, channels, init_scale=init_scale) self.skip_rescale = skip_rescale def forward(self, x): B, C, H, W = x.shape h = self.GroupNorm_0(x) q = self.NIN_0(h) k = self.NIN_1(h) v = self.NIN_2(h) w = torch.einsum("bchw,bcij->bhwij", q, k) * (int(C) ** (-0.5)) w = torch.reshape(w, (B, H, W, H * W)) w = F.softmax(w, dim=-1) w = torch.reshape(w, (B, H, W, H, W)) h = torch.einsum("bhwij,bcij->bchw", w, v) h = self.NIN_3(h) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.0)