single_file.py 13.3 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from huggingface_hub.utils import validate_hf_hub_args
16

17
18
19
20
21
22
23
24
25
26
27
28
from ..utils import is_transformers_available, logging
from .single_file_utils import (
    create_diffusers_unet_model_from_ldm,
    create_diffusers_vae_model_from_ldm,
    create_scheduler_from_ldm,
    create_text_encoders_and_tokenizers_from_ldm,
    fetch_ldm_config_and_checkpoint,
    infer_model_type,
)


logger = logging.get_logger(__name__)
29

30
31
32
33
34
35
# Pipelines that support the SDXL Refiner checkpoint
REFINER_PIPELINES = [
    "StableDiffusionXLImg2ImgPipeline",
    "StableDiffusionXLInpaintPipeline",
    "StableDiffusionXLControlNetImg2ImgPipeline",
]
36
37

if is_transformers_available():
38
39
40
41
42
43
44
45
46
47
48
49
50
    from transformers import AutoFeatureExtractor


def build_sub_model_components(
    pipeline_components,
    pipeline_class_name,
    component_name,
    original_config,
    checkpoint,
    local_files_only=False,
    load_safety_checker=False,
    model_type=None,
    image_size=None,
51
    torch_dtype=None,
52
53
54
55
56
57
58
    **kwargs,
):
    if component_name in pipeline_components:
        return {}

    if component_name == "unet":
        num_in_channels = kwargs.pop("num_in_channels", None)
59
60
        upcast_attention = kwargs.pop("upcast_attention", None)

61
        unet_components = create_diffusers_unet_model_from_ldm(
62
63
64
65
66
67
            pipeline_class_name,
            original_config,
            checkpoint,
            num_in_channels=num_in_channels,
            image_size=image_size,
            torch_dtype=torch_dtype,
68
            model_type=model_type,
69
            upcast_attention=upcast_attention,
70
71
        )
        return unet_components
72

73
    if component_name == "vae":
74
        scaling_factor = kwargs.get("scaling_factor", None)
75
        vae_components = create_diffusers_vae_model_from_ldm(
76
77
78
79
80
81
82
            pipeline_class_name,
            original_config,
            checkpoint,
            image_size,
            scaling_factor,
            torch_dtype,
            model_type=model_type,
83
84
        )
        return vae_components
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    if component_name == "scheduler":
        scheduler_type = kwargs.get("scheduler_type", "ddim")
        prediction_type = kwargs.get("prediction_type", None)

        scheduler_components = create_scheduler_from_ldm(
            pipeline_class_name,
            original_config,
            checkpoint,
            scheduler_type=scheduler_type,
            prediction_type=prediction_type,
            model_type=model_type,
        )

        return scheduler_components

    if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]:
        text_encoder_components = create_text_encoders_and_tokenizers_from_ldm(
            original_config,
            checkpoint,
            model_type=model_type,
            local_files_only=local_files_only,
107
            torch_dtype=torch_dtype,
108
109
110
111
112
113
114
115
        )
        return text_encoder_components

    if component_name == "safety_checker":
        if load_safety_checker:
            from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

            safety_checker = StableDiffusionSafetyChecker.from_pretrained(
116
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
            )
        else:
            safety_checker = None
        return {"safety_checker": safety_checker}

    if component_name == "feature_extractor":
        if load_safety_checker:
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )
        else:
            feature_extractor = None
        return {"feature_extractor": feature_extractor}

    return


def set_additional_components(
    pipeline_class_name,
    original_config,
137
    checkpoint=None,
138
139
140
141
    model_type=None,
):
    components = {}
    if pipeline_class_name in REFINER_PIPELINES:
142
        model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type)
143
144
145
146
147
148
149
150
151
        is_refiner = model_type == "SDXL-Refiner"
        components.update(
            {
                "requires_aesthetics_score": is_refiner,
                "force_zeros_for_empty_prompt": False if is_refiner else True,
            }
        )

    return components
152
153
154
155
156
157
158
159


class FromSingleFileMixin:
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """

    @classmethod
160
    @validate_hf_hub_args
161
162
163
164
165
166
167
168
169
170
171
172
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
173
                Override the default `torch.dtype` and load the model with another dtype.
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
189
            token (`str` or *bool*, *optional*):
190
191
192
193
194
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
195
196
197
198
199
200
            original_config_file (`str`, *optional*):
                The path to the original config file that was used to train the model. If not provided, the config file
                will be inferred from the checkpoint file.
            model_type (`str`, *optional*):
                The type of model to load. If not provided, the model type will be inferred from the checkpoint file.
            image_size (`int`, *optional*):
201
202
                The size of the image output. It's used to configure the `sample_size` parameter of the UNet and VAE
                model.
203
            load_safety_checker (`bool`, *optional*, defaults to `False`):
204
205
                Whether to load the safety checker model or not. By default, the safety checker is not loaded unless a
                `safety_checker` component is passed to the `kwargs`.
206
            num_in_channels (`int`, *optional*):
207
208
                Specify the number of input channels for the UNet model. Read more about how to configure UNet model
                with this parameter
209
210
                [here](https://huggingface.co/docs/diffusers/training/adapt_a_model#configure-unet2dconditionmodel-parameters).
            scaling_factor (`float`, *optional*):
211
212
                The scaling factor to use for the VAE model. If not provided, it is inferred from the config file
                first. If the scaling factor is not found in the config file, the default value 0.18215 is used.
213
            scheduler_type (`str`, *optional*):
214
215
                The type of scheduler to load. If not provided, the scheduler type will be inferred from the checkpoint
                file.
216
            prediction_type (`str`, *optional*):
217
218
                The type of prediction to load. If not provided, the prediction type will be inferred from the
                checkpoint file.
219
220
221
222
223
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        original_config_file = kwargs.pop("original_config_file", None)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
250
        token = kwargs.pop("token", None)
251
252
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", False)
253
254
255
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)

256
        class_name = cls.__name__
257

258
259
260
        original_config, checkpoint = fetch_ldm_config_and_checkpoint(
            pretrained_model_link_or_path=pretrained_model_link_or_path,
            class_name=class_name,
261
            original_config_file=original_config_file,
262
263
264
265
266
            resume_download=resume_download,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
267
            local_files_only=local_files_only,
268
            cache_dir=cache_dir,
269
270
        )

271
        from ..pipelines.pipeline_utils import _get_pipeline_class
272

273
274
275
276
        pipeline_class = _get_pipeline_class(
            cls,
            config=None,
            cache_dir=cache_dir,
277
278
        )

279
280
281
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
282

283
        model_type = kwargs.pop("model_type", None)
284
        image_size = kwargs.pop("image_size", None)
285
286
287
        load_safety_checker = (kwargs.pop("load_safety_checker", False)) or (
            passed_class_obj.get("safety_checker", None) is not None
        )
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        init_kwargs = {}
        for name in expected_modules:
            if name in passed_class_obj:
                init_kwargs[name] = passed_class_obj[name]
            else:
                components = build_sub_model_components(
                    init_kwargs,
                    class_name,
                    name,
                    original_config,
                    checkpoint,
                    model_type=model_type,
                    image_size=image_size,
                    load_safety_checker=load_safety_checker,
                    local_files_only=local_files_only,
304
                    torch_dtype=torch_dtype,
305
306
307
308
309
                    **kwargs,
                )
                if not components:
                    continue
                init_kwargs.update(components)
310

311
312
313
        additional_components = set_additional_components(
            class_name, original_config, checkpoint=checkpoint, model_type=model_type
        )
314
315
        if additional_components:
            init_kwargs.update(additional_components)
316

317
318
        init_kwargs.update(passed_pipe_kwargs)
        pipe = pipeline_class(**init_kwargs)
319
320

        if torch_dtype is not None:
321
            pipe.to(dtype=torch_dtype)
322

323
        return pipe