single_file.py 10.8 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from huggingface_hub.utils import validate_hf_hub_args
16

17
18
19
20
21
22
23
24
25
26
27
28
from ..utils import is_transformers_available, logging
from .single_file_utils import (
    create_diffusers_unet_model_from_ldm,
    create_diffusers_vae_model_from_ldm,
    create_scheduler_from_ldm,
    create_text_encoders_and_tokenizers_from_ldm,
    fetch_ldm_config_and_checkpoint,
    infer_model_type,
)


logger = logging.get_logger(__name__)
29

30
31
32
33
34
35
# Pipelines that support the SDXL Refiner checkpoint
REFINER_PIPELINES = [
    "StableDiffusionXLImg2ImgPipeline",
    "StableDiffusionXLInpaintPipeline",
    "StableDiffusionXLControlNetImg2ImgPipeline",
]
36
37

if is_transformers_available():
38
39
40
41
42
43
44
45
46
47
48
49
50
    from transformers import AutoFeatureExtractor


def build_sub_model_components(
    pipeline_components,
    pipeline_class_name,
    component_name,
    original_config,
    checkpoint,
    local_files_only=False,
    load_safety_checker=False,
    model_type=None,
    image_size=None,
51
    torch_dtype=None,
52
53
54
55
56
57
58
59
    **kwargs,
):
    if component_name in pipeline_components:
        return {}

    if component_name == "unet":
        num_in_channels = kwargs.pop("num_in_channels", None)
        unet_components = create_diffusers_unet_model_from_ldm(
60
61
62
63
64
65
            pipeline_class_name,
            original_config,
            checkpoint,
            num_in_channels=num_in_channels,
            image_size=image_size,
            torch_dtype=torch_dtype,
66
67
        )
        return unet_components
68

69
    if component_name == "vae":
70
        scaling_factor = kwargs.get("scaling_factor", None)
71
        vae_components = create_diffusers_vae_model_from_ldm(
72
            pipeline_class_name, original_config, checkpoint, image_size, scaling_factor, torch_dtype
73
74
        )
        return vae_components
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    if component_name == "scheduler":
        scheduler_type = kwargs.get("scheduler_type", "ddim")
        prediction_type = kwargs.get("prediction_type", None)

        scheduler_components = create_scheduler_from_ldm(
            pipeline_class_name,
            original_config,
            checkpoint,
            scheduler_type=scheduler_type,
            prediction_type=prediction_type,
            model_type=model_type,
        )

        return scheduler_components

    if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]:
        text_encoder_components = create_text_encoders_and_tokenizers_from_ldm(
            original_config,
            checkpoint,
            model_type=model_type,
            local_files_only=local_files_only,
97
            torch_dtype=torch_dtype,
98
99
100
101
102
103
104
105
        )
        return text_encoder_components

    if component_name == "safety_checker":
        if load_safety_checker:
            from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

            safety_checker = StableDiffusionSafetyChecker.from_pretrained(
106
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            )
        else:
            safety_checker = None
        return {"safety_checker": safety_checker}

    if component_name == "feature_extractor":
        if load_safety_checker:
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )
        else:
            feature_extractor = None
        return {"feature_extractor": feature_extractor}

    return


def set_additional_components(
    pipeline_class_name,
    original_config,
    model_type=None,
):
    components = {}
    if pipeline_class_name in REFINER_PIPELINES:
        model_type = infer_model_type(original_config, model_type=model_type)
        is_refiner = model_type == "SDXL-Refiner"
        components.update(
            {
                "requires_aesthetics_score": is_refiner,
                "force_zeros_for_empty_prompt": False if is_refiner else True,
            }
        )

    return components
141
142
143
144
145
146
147
148


class FromSingleFileMixin:
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """

    @classmethod
149
    @validate_hf_hub_args
150
151
152
153
154
155
156
157
158
159
160
161
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
162
                Override the default `torch.dtype` and load the model with another dtype.
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
178
            token (`str` or *bool*, *optional*):
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_single_file(
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        original_config_file = kwargs.pop("original_config_file", None)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
210
        token = kwargs.pop("token", None)
211
212
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", False)
213
214
215
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)

216
        class_name = cls.__name__
217

218
219
220
        original_config, checkpoint = fetch_ldm_config_and_checkpoint(
            pretrained_model_link_or_path=pretrained_model_link_or_path,
            class_name=class_name,
221
            original_config_file=original_config_file,
222
223
224
225
226
            resume_download=resume_download,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
227
            local_files_only=local_files_only,
228
            cache_dir=cache_dir,
229
230
        )

231
        from ..pipelines.pipeline_utils import _get_pipeline_class
232

233
234
235
236
        pipeline_class = _get_pipeline_class(
            cls,
            config=None,
            cache_dir=cache_dir,
237
238
        )

239
240
241
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
242

243
        model_type = kwargs.pop("model_type", None)
244
        image_size = kwargs.pop("image_size", None)
245
246
247
        load_safety_checker = (kwargs.pop("load_safety_checker", False)) or (
            passed_class_obj.get("safety_checker", None) is not None
        )
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        init_kwargs = {}
        for name in expected_modules:
            if name in passed_class_obj:
                init_kwargs[name] = passed_class_obj[name]
            else:
                components = build_sub_model_components(
                    init_kwargs,
                    class_name,
                    name,
                    original_config,
                    checkpoint,
                    model_type=model_type,
                    image_size=image_size,
                    load_safety_checker=load_safety_checker,
                    local_files_only=local_files_only,
264
                    torch_dtype=torch_dtype,
265
266
267
268
269
                    **kwargs,
                )
                if not components:
                    continue
                init_kwargs.update(components)
270

271
272
273
        additional_components = set_additional_components(class_name, original_config, model_type=model_type)
        if additional_components:
            init_kwargs.update(additional_components)
274

275
276
        init_kwargs.update(passed_pipe_kwargs)
        pipe = pipeline_class(**init_kwargs)
277
278

        if torch_dtype is not None:
279
            pipe.to(dtype=torch_dtype)
280

281
        return pipe