test_vq_diffusion.py 7.7 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
23
24
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
Will Berman's avatar
Will Berman committed
25
26
27
28
29
30
31
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer


torch.backends.cuda.matmul.allow_tf32 = False


32
class VQDiffusionPipelineFastTests(unittest.TestCase):
Will Berman's avatar
Will Berman committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @property
    def num_embed(self):
        return 12

    @property
    def num_embeds_ada_norm(self):
        return 12

47
48
49
50
    @property
    def text_embedder_hidden_size(self):
        return 32

Will Berman's avatar
Will Berman committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    @property
    def dummy_vqvae(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
            num_vq_embeddings=self.num_embed,
            vq_embed_dim=3,
        )
        return model

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
77
            hidden_size=self.text_embedder_hidden_size,
Will Berman's avatar
Will Berman committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_transformer(self):
        torch.manual_seed(0)

        height = 12
        width = 12

        model_kwargs = {
            "attention_bias": True,
            "cross_attention_dim": 32,
            "attention_head_dim": height * width,
            "num_attention_heads": 1,
            "num_vector_embeds": self.num_embed,
            "num_embeds_ada_norm": self.num_embeds_ada_norm,
            "norm_num_groups": 32,
            "sample_size": width,
            "activation_fn": "geglu-approximate",
        }

        model = Transformer2DModel(**model_kwargs)
        return model

    def test_vq_diffusion(self):
        device = "cpu"

        vqvae = self.dummy_vqvae
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        transformer = self.dummy_transformer
        scheduler = VQDiffusionScheduler(self.num_embed)
117
        learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False)
Will Berman's avatar
Will Berman committed
118
119

        pipe = VQDiffusionPipeline(
120
121
122
123
124
125
            vqvae=vqvae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
            scheduler=scheduler,
            learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
Will Berman's avatar
Will Berman committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        )
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "teddy bear playing in the pool"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = pipe(
            [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 24, 24, 3)

        expected_slice = np.array([0.6583, 0.6410, 0.5325, 0.5635, 0.5563, 0.4234, 0.6008, 0.5491, 0.4880])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def test_vq_diffusion_classifier_free_sampling(self):
        device = "cpu"

        vqvae = self.dummy_vqvae
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        transformer = self.dummy_transformer
        scheduler = VQDiffusionScheduler(self.num_embed)
        learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(
            learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length
        )

        pipe = VQDiffusionPipeline(
            vqvae=vqvae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
            scheduler=scheduler,
            learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
        )
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "teddy bear playing in the pool"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = pipe(
            [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 24, 24, 3)

        expected_slice = np.array([0.6647, 0.6531, 0.5303, 0.5891, 0.5726, 0.4439, 0.6304, 0.5564, 0.4912])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

Will Berman's avatar
Will Berman committed
195
196
197
198
199
200
201
202
203
204

@slow
@require_torch_gpu
class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

205
206
    def test_vq_diffusion_classifier_free_sampling(self):
        expected_image = load_numpy(
Will Berman's avatar
Will Berman committed
207
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
208
            "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy"
Will Berman's avatar
Will Berman committed
209
210
211
212
213
214
        )

        pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq")
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

215
216
        # requires GPU generator for gumbel softmax
        # don't use GPU generator in tests though
Will Berman's avatar
Will Berman committed
217
218
219
220
221
222
223
224
225
226
227
228
        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipeline(
            "teddy bear playing in the pool",
            num_images_per_prompt=1,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).max() < 1e-2