1. 25 Jan, 2023 1 commit
    • Patrick von Platen's avatar
      Reproducibility 3/3 (#1924) · 6ba2231d
      Patrick von Platen authored
      
      
      * make tests deterministic
      
      * run slow tests
      
      * prepare for testing
      
      * finish
      
      * refactor
      
      * add print statements
      
      * finish more
      
      * correct some test failures
      
      * more fixes
      
      * set up to correct tests
      
      * more corrections
      
      * up
      
      * fix more
      
      * more prints
      
      * add
      
      * up
      
      * up
      
      * up
      
      * uP
      
      * uP
      
      * more fixes
      
      * uP
      
      * up
      
      * up
      
      * up
      
      * up
      
      * fix more
      
      * up
      
      * up
      
      * clean tests
      
      * up
      
      * up
      
      * up
      
      * more fixes
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * make
      
      * correct
      
      * finish
      
      * finish
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      6ba2231d
  2. 06 Dec, 2022 1 commit
    • Anton Lozhkov's avatar
      Standardize fast pipeline tests with PipelineTestMixin (#1526) · 02d83c9f
      Anton Lozhkov authored
      
      
      * [WIP] Standardize fast pipeline tests with PipelineTestMixin
      
      * refactor the sd tests a bit
      
      * add more common tests
      
      * add xformers
      
      * add progressbar test
      
      * cleanup
      
      * upd fp16
      
      * CycleDiffusionPipelineFastTests
      
      * DanceDiffusionPipelineFastTests
      
      * AltDiffusionPipelineFastTests
      
      * StableDiffusion2PipelineFastTests
      
      * StableDiffusion2InpaintPipelineFastTests
      
      * StableDiffusionImageVariationPipelineFastTests
      
      * StableDiffusionImg2ImgPipelineFastTests
      
      * StableDiffusionInpaintPipelineFastTests
      
      * remove unused mixins
      
      * quality
      
      * add missing inits
      
      * try to fix mps tests
      
      * fix mps tests
      
      * add mps warmups
      
      * skip for some pipelines
      
      * style
      
      * Update tests/test_pipelines_common.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      02d83c9f
  3. 16 Nov, 2022 1 commit
  4. 03 Nov, 2022 1 commit
    • Will Berman's avatar
      VQ-diffusion (#658) · ef2ea33c
      Will Berman authored
      
      
      * Changes for VQ-diffusion VQVAE
      
      Add specify dimension of embeddings to VQModel:
      `VQModel` will by default set the dimension of embeddings to the number
      of latent channels. The VQ-diffusion VQVAE has a smaller
      embedding dimension, 128, than number of latent channels, 256.
      
      Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
      unet block helpers. VQ-diffusion's VQVAE uses those two block types.
      
      * Changes for VQ-diffusion transformer
      
      Modify attention.py so SpatialTransformer can be used for
      VQ-diffusion's transformer.
      
      SpatialTransformer:
      - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
      - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
      - modified forward pass to take optional timestep embeddings
      
      ImagePositionalEmbeddings:
      - added to provide positional embeddings to discrete inputs for latent pixels
      
      BasicTransformerBlock:
      - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
      - modified forward pass to take optional timestep embeddings
      
      CrossAttention:
      - now may optionally take a bias parameter for its query, key, and value linear layers
      
      FeedForward:
      - Internal layers are now configurable
      
      ApproximateGELU:
      - Activation function in VQ-diffusion's feedforward layer
      
      AdaLayerNorm:
      - Norm layer modified to incorporate timestep embeddings
      
      * Add VQ-diffusion scheduler
      
      * Add VQ-diffusion pipeline
      
      * Add VQ-diffusion convert script to diffusers
      
      * Add VQ-diffusion dummy objects
      
      * Add VQ-diffusion markdown docs
      
      * Add VQ-diffusion tests
      
      * some renaming
      
      * some fixes
      
      * more renaming
      
      * correct
      
      * fix typo
      
      * correct weights
      
      * finalize
      
      * fix tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * finish
      
      * finish
      
      * up
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ef2ea33c