"vscode:/vscode.git/clone" did not exist on "b59815bc2b6fbc68c2fa26833aea210061391bb9"
unet_rl.py 6.96 KB
Newer Older
1
2
3
4
# model adapted from diffuser https://github.com/jannerm/diffuser/blob/main/diffuser/models/temporal.py

import torch
import torch.nn as nn
5

Nathan Lambert's avatar
Nathan Lambert committed
6
7
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
8
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
9
from .resnet import ResidualTemporalBlock
Nathan Lambert's avatar
Nathan Lambert committed
10
11


12
13
14
15
16
17
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
18
        return get_timestep_embedding(x, self.dim)
19

20

21
22
23
24
25
26
27
28
class Downsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.Conv1d(dim, dim, 3, 2, 1)

    def forward(self, x):
        return self.conv(x)

29

30
31
32
33
34
35
36
37
class Upsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)

38

Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
        else:
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


54
class Conv1dBlock(nn.Module):
55
56
57
    """
    Conv1d --> GroupNorm --> Mish
    """
58
59
60
61
62
63

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
        super().__init__()

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
Patrick von Platen's avatar
Patrick von Platen committed
64
65
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
66
            nn.GroupNorm(n_groups, out_channels),
Patrick von Platen's avatar
Patrick von Platen committed
67
68
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
69
70
71
72
73
74
75
            nn.Mish(),
        )

    def forward(self, x):
        return self.block(x)


anton-l's avatar
anton-l committed
76
class TemporalUNet(ModelMixin, ConfigMixin):  # (nn.Module):
77
    def __init__(
78
        self,
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
        training_horizon=128,
        transition_dim=14,
        cond_dim=3,
82
83
84
        predict_epsilon=False,
        clip_denoised=True,
        dim=32,
Patrick von Platen's avatar
Patrick von Platen committed
85
        dim_mults=(1, 4, 8),
86
87
88
    ):
        super().__init__()

Nathan Lambert's avatar
Nathan Lambert committed
89
90
91
92
93
        self.transition_dim = transition_dim
        self.cond_dim = cond_dim
        self.predict_epsilon = predict_epsilon
        self.clip_denoised = clip_denoised

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )

        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)

112
113
114
            self.downs.append(
                nn.ModuleList(
                    [
Nathan Lambert's avatar
Nathan Lambert committed
115
116
                        ResidualTemporalBlock(dim_in, dim_out, embed_dim=time_dim, horizon=training_horizon),
                        ResidualTemporalBlock(dim_out, dim_out, embed_dim=time_dim, horizon=training_horizon),
117
118
119
120
                        Downsample1d(dim_out) if not is_last else nn.Identity(),
                    ]
                )
            )
121
122

            if not is_last:
Nathan Lambert's avatar
Nathan Lambert committed
123
                training_horizon = training_horizon // 2
124
125

        mid_dim = dims[-1]
Nathan Lambert's avatar
Nathan Lambert committed
126
127
        self.mid_block1 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim=time_dim, horizon=training_horizon)
        self.mid_block2 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim=time_dim, horizon=training_horizon)
128
129
130
131

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
            is_last = ind >= (num_resolutions - 1)

132
133
134
            self.ups.append(
                nn.ModuleList(
                    [
Nathan Lambert's avatar
Nathan Lambert committed
135
136
                        ResidualTemporalBlock(dim_out * 2, dim_in, embed_dim=time_dim, horizon=training_horizon),
                        ResidualTemporalBlock(dim_in, dim_in, embed_dim=time_dim, horizon=training_horizon),
137
138
139
140
                        Upsample1d(dim_in) if not is_last else nn.Identity(),
                    ]
                )
            )
141
142

            if not is_last:
Nathan Lambert's avatar
Nathan Lambert committed
143
                training_horizon = training_horizon * 2
144
145
146
147
148
149

        self.final_conv = nn.Sequential(
            Conv1dBlock(dim, dim, kernel_size=5),
            nn.Conv1d(dim, transition_dim, 1),
        )

Patrick von Platen's avatar
Patrick von Platen committed
150
    def forward(self, x, timesteps):
151
152
153
        """
        x : [ batch x horizon x transition ]
        """
154

Patrick von Platen's avatar
Patrick von Platen committed
155
        x = x.permute(0, 2, 1)
156

Patrick von Platen's avatar
Patrick von Platen committed
157
        t = self.time_mlp(timesteps)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        h = []

        for resnet, resnet2, downsample in self.downs:
            x = resnet(x, t)
            x = resnet2(x, t)
            h.append(x)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_block2(x, t)

        for resnet, resnet2, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = resnet(x, t)
            x = resnet2(x, t)
            x = upsample(x)

        x = self.final_conv(x)

Patrick von Platen's avatar
Patrick von Platen committed
177
        x = x.permute(0, 2, 1)
178
179
180
        return x


181
class TemporalValue(nn.Module):
182
    def __init__(
183
184
185
186
187
188
189
190
        self,
        horizon,
        transition_dim,
        cond_dim,
        dim=32,
        time_dim=None,
        out_dim=1,
        dim_mults=(1, 2, 4, 8),
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    ):
        super().__init__()

        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = time_dim or dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )

        self.blocks = nn.ModuleList([])

        print(in_out)
        for dim_in, dim_out in in_out:
209
210
211
212
213
214
215
216
217
            self.blocks.append(
                nn.ModuleList(
                    [
                        ResidualTemporalBlock(dim_in, dim_out, kernel_size=5, embed_dim=time_dim, horizon=horizon),
                        ResidualTemporalBlock(dim_out, dim_out, kernel_size=5, embed_dim=time_dim, horizon=horizon),
                        Downsample1d(dim_out),
                    ]
                )
            )
218
219
220
221
222
223
224
225
226
227
228
229

            horizon = horizon // 2

        fc_dim = dims[-1] * max(horizon, 1)

        self.final_block = nn.Sequential(
            nn.Linear(fc_dim + time_dim, fc_dim // 2),
            nn.Mish(),
            nn.Linear(fc_dim // 2, out_dim),
        )

    def forward(self, x, cond, time, *args):
230
231
232
        """
        x : [ batch x horizon x transition ]
        """
233

Patrick von Platen's avatar
Patrick von Platen committed
234
        x = x.permute(0, 2, 1)
235
236
237
238
239
240
241
242
243
244

        t = self.time_mlp(time)

        for resnet, resnet2, downsample in self.blocks:
            x = resnet(x, t)
            x = resnet2(x, t)
            x = downsample(x)

        x = x.view(len(x), -1)
        out = self.final_block(torch.cat([x, t], dim=-1))
245
        return out