unet_rl.py 8.15 KB
Newer Older
1
2
# model adapted from diffuser https://github.com/jannerm/diffuser/blob/main/diffuser/models/temporal.py

3
4
import math

5
6
import torch
import torch.nn as nn
7

Nathan Lambert's avatar
Nathan Lambert committed
8
9
10
11
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin


12
13
14
15
16
17
18
19
20
21
22
23
24
25
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb

26

27
28
29
30
31
32
33
34
class Downsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.Conv1d(dim, dim, 3, 2, 1)

    def forward(self, x):
        return self.conv(x)

35

36
37
38
39
40
41
42
43
class Upsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)

44

Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
        else:
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


60
class Conv1dBlock(nn.Module):
61
62
63
    """
    Conv1d --> GroupNorm --> Mish
    """
64
65
66
67
68
69

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
        super().__init__()

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
Patrick von Platen's avatar
Patrick von Platen committed
70
71
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
72
            nn.GroupNorm(n_groups, out_channels),
Patrick von Platen's avatar
Patrick von Platen committed
73
74
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
75
76
77
78
79
80
81
            nn.Mish(),
        )

    def forward(self, x):
        return self.block(x)


82
class ResidualTemporalBlock(nn.Module):
83
84
85
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

86
87
88
89
90
91
        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )
92
93
94
95

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
Patrick von Platen's avatar
Patrick von Platen committed
96
97
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
98
99
        )

100
101
102
        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )
103
104

    def forward(self, x, t):
105
        """
Patrick von Platen's avatar
Patrick von Platen committed
106
107
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
108
        """
109
110
111
112
113
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


anton-l's avatar
anton-l committed
114
class TemporalUNet(ModelMixin, ConfigMixin):  # (nn.Module):
115
    def __init__(
116
        self,
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
        training_horizon=128,
        transition_dim=14,
        cond_dim=3,
120
121
122
        predict_epsilon=False,
        clip_denoised=True,
        dim=32,
Patrick von Platen's avatar
Patrick von Platen committed
123
        dim_mults=(1, 4, 8),
124
125
126
    ):
        super().__init__()

Nathan Lambert's avatar
Nathan Lambert committed
127
128
129
130
131
        self.transition_dim = transition_dim
        self.cond_dim = cond_dim
        self.predict_epsilon = predict_epsilon
        self.clip_denoised = clip_denoised

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )

        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)

150
151
152
            self.downs.append(
                nn.ModuleList(
                    [
Nathan Lambert's avatar
Nathan Lambert committed
153
154
                        ResidualTemporalBlock(dim_in, dim_out, embed_dim=time_dim, horizon=training_horizon),
                        ResidualTemporalBlock(dim_out, dim_out, embed_dim=time_dim, horizon=training_horizon),
155
156
157
158
                        Downsample1d(dim_out) if not is_last else nn.Identity(),
                    ]
                )
            )
159
160

            if not is_last:
Nathan Lambert's avatar
Nathan Lambert committed
161
                training_horizon = training_horizon // 2
162
163

        mid_dim = dims[-1]
Nathan Lambert's avatar
Nathan Lambert committed
164
165
        self.mid_block1 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim=time_dim, horizon=training_horizon)
        self.mid_block2 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim=time_dim, horizon=training_horizon)
166
167
168
169

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
            is_last = ind >= (num_resolutions - 1)

170
171
172
            self.ups.append(
                nn.ModuleList(
                    [
Nathan Lambert's avatar
Nathan Lambert committed
173
174
                        ResidualTemporalBlock(dim_out * 2, dim_in, embed_dim=time_dim, horizon=training_horizon),
                        ResidualTemporalBlock(dim_in, dim_in, embed_dim=time_dim, horizon=training_horizon),
175
176
177
178
                        Upsample1d(dim_in) if not is_last else nn.Identity(),
                    ]
                )
            )
179
180

            if not is_last:
Nathan Lambert's avatar
Nathan Lambert committed
181
                training_horizon = training_horizon * 2
182
183
184
185
186
187

        self.final_conv = nn.Sequential(
            Conv1dBlock(dim, dim, kernel_size=5),
            nn.Conv1d(dim, transition_dim, 1),
        )

Patrick von Platen's avatar
Patrick von Platen committed
188
    def forward(self, x, timesteps):
189
190
191
        """
        x : [ batch x horizon x transition ]
        """
192

Patrick von Platen's avatar
Patrick von Platen committed
193
        x = x.permute(0, 2, 1)
194

Patrick von Platen's avatar
Patrick von Platen committed
195
        t = self.time_mlp(timesteps)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        h = []

        for resnet, resnet2, downsample in self.downs:
            x = resnet(x, t)
            x = resnet2(x, t)
            h.append(x)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_block2(x, t)

        for resnet, resnet2, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = resnet(x, t)
            x = resnet2(x, t)
            x = upsample(x)

        x = self.final_conv(x)

Patrick von Platen's avatar
Patrick von Platen committed
215
        x = x.permute(0, 2, 1)
216
217
218
        return x


219
class TemporalValue(nn.Module):
220
    def __init__(
221
222
223
224
225
226
227
228
        self,
        horizon,
        transition_dim,
        cond_dim,
        dim=32,
        time_dim=None,
        out_dim=1,
        dim_mults=(1, 2, 4, 8),
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    ):
        super().__init__()

        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = time_dim or dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )

        self.blocks = nn.ModuleList([])

        print(in_out)
        for dim_in, dim_out in in_out:
247
248
249
250
251
252
253
254
255
            self.blocks.append(
                nn.ModuleList(
                    [
                        ResidualTemporalBlock(dim_in, dim_out, kernel_size=5, embed_dim=time_dim, horizon=horizon),
                        ResidualTemporalBlock(dim_out, dim_out, kernel_size=5, embed_dim=time_dim, horizon=horizon),
                        Downsample1d(dim_out),
                    ]
                )
            )
256
257
258
259
260
261
262
263
264
265
266
267

            horizon = horizon // 2

        fc_dim = dims[-1] * max(horizon, 1)

        self.final_block = nn.Sequential(
            nn.Linear(fc_dim + time_dim, fc_dim // 2),
            nn.Mish(),
            nn.Linear(fc_dim // 2, out_dim),
        )

    def forward(self, x, cond, time, *args):
268
269
270
        """
        x : [ batch x horizon x transition ]
        """
271

Patrick von Platen's avatar
Patrick von Platen committed
272
        x = x.permute(0, 2, 1)
273
274
275
276
277
278
279
280
281
282

        t = self.time_mlp(time)

        for resnet, resnet2, downsample in self.blocks:
            x = resnet(x, t)
            x = resnet2(x, t)
            x = downsample(x)

        x = x.view(len(x), -1)
        out = self.final_block(torch.cat([x, t], dim=-1))
283
        return out