unet_ldm.py 35.5 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
patil-suraj's avatar
patil-suraj committed
3
4
5
6
7

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
8

patil-suraj's avatar
patil-suraj committed
9
10
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
11
from .attention import AttentionBlock
12
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
13
from .resnet import Downsample, ResBlock, TimestepBlock, Upsample
patil-suraj's avatar
patil-suraj committed
14

Patrick von Platen's avatar
Patrick von Platen committed
15

patil-suraj's avatar
patil-suraj committed
16
17
18
19
20
def exists(val):
    return val is not None


def uniq(arr):
Patrick von Platen's avatar
Patrick von Platen committed
21
    return {el: True for el in arr}.keys()
patil-suraj's avatar
patil-suraj committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
53
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
54
55
56
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


patil-suraj's avatar
cleanup  
patil-suraj committed
78
# class LinearAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#    def __init__(self, dim, heads=4, dim_head=32):
#        super().__init__()
#        self.heads = heads
#        hidden_dim = dim_head * heads
#        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
#        self.to_out = nn.Conv2d(hidden_dim, dim, 1)
#
#    def forward(self, x):
#        b, c, h, w = x.shape
#        qkv = self.to_qkv(x)
#        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
#        import ipdb; ipdb.set_trace()
#        k = k.softmax(dim=-1)
#        context = torch.einsum("bhdn,bhen->bhde", k, v)
#        out = torch.einsum("bhde,bhdn->bhen", context, q)
#        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
#        return self.to_out(out)
#

patil-suraj's avatar
cleanup  
patil-suraj committed
98
# class SpatialSelfAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#    def __init__(self, in_channels):
#        super().__init__()
#        self.in_channels = in_channels
#
#        self.norm = Normalize(in_channels)
#        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#
#    def forward(self, x):
#        h_ = x
#        h_ = self.norm(h_)
#        q = self.q(h_)
#        k = self.k(h_)
#        v = self.v(h_)
#
patil-suraj's avatar
cleanup  
patil-suraj committed
116
# compute attention
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
123
124
#        b, c, h, w = q.shape
#        q = rearrange(q, "b c h w -> b (h w) c")
#        k = rearrange(k, "b c h w -> b c (h w)")
#        w_ = torch.einsum("bij,bjk->bik", q, k)
#
#        w_ = w_ * (int(c) ** (-0.5))
#        w_ = torch.nn.functional.softmax(w_, dim=2)
#
patil-suraj's avatar
cleanup  
patil-suraj committed
125
# attend to values
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
132
133
#        v = rearrange(v, "b c h w -> b c (h w)")
#        w_ = rearrange(w_, "b i j -> b j i")
#        h_ = torch.einsum("bij,bjk->bik", v, w_)
#        h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
#        h_ = self.proj_out(h_)
#
#        return x + h_
#
patil-suraj's avatar
patil-suraj committed
134

patil-suraj's avatar
cleanup  
patil-suraj committed
135

patil-suraj's avatar
patil-suraj committed
136
class CrossAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
137
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
138
139
140
141
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

Patrick von Platen's avatar
Patrick von Platen committed
142
        self.scale = dim_head**-0.5
patil-suraj's avatar
patil-suraj committed
143
144
145
146
147
148
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

Patrick von Platen's avatar
Patrick von Platen committed
149
        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
patil-suraj's avatar
patil-suraj committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

patil-suraj's avatar
patil-suraj committed
165
    def forward(self, x, context=None, mask=None):
166
167
        batch_size, sequence_length, dim = x.shape

patil-suraj's avatar
patil-suraj committed
168
169
170
171
172
173
174
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

175
176
177
        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)
patil-suraj's avatar
patil-suraj committed
178

Patrick von Platen's avatar
Patrick von Platen committed
179
        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
patil-suraj's avatar
patil-suraj committed
180
181

        if exists(mask):
182
            mask = mask.reshape(batch_size, -1)
patil-suraj's avatar
patil-suraj committed
183
            max_neg_value = -torch.finfo(sim.dtype).max
184
            mask = mask[:, None, :].repeat(h, 1, 1)
patil-suraj's avatar
patil-suraj committed
185
186
187
188
189
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

Patrick von Platen's avatar
Patrick von Platen committed
190
        out = torch.einsum("b i j, b j d -> b i d", attn, v)
191
        out = self.reshape_batch_dim_to_heads(out)
patil-suraj's avatar
patil-suraj committed
192
193
194
195
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
196
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
patil-suraj's avatar
patil-suraj committed
197
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
patil-suraj's avatar
patil-suraj committed
201
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
Patrick von Platen's avatar
Patrick von Platen committed
202
203
204
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
patil-suraj's avatar
patil-suraj committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
Patrick von Platen's avatar
Patrick von Platen committed
219
220
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
patil-suraj's avatar
patil-suraj committed
221
    """
Patrick von Platen's avatar
Patrick von Platen committed
222
223

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
patil-suraj's avatar
patil-suraj committed
224
225
226
227
228
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)

Patrick von Platen's avatar
Patrick von Platen committed
229
        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
patil-suraj's avatar
patil-suraj committed
230
231

        self.transformer_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
patil-suraj's avatar
patil-suraj committed
236
237
        )

Patrick von Platen's avatar
Patrick von Platen committed
238
        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
patil-suraj's avatar
patil-suraj committed
239
240
241
242
243
244
245

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
246
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
patil-suraj's avatar
patil-suraj committed
247
248
        for block in self.transformer_blocks:
            x = block(x, context=context)
249
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
patil-suraj's avatar
patil-suraj committed
250
251
252
        x = self.proj_out(x)
        return x + x_in

Patrick von Platen's avatar
Patrick von Platen committed
253

patil-suraj's avatar
patil-suraj committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
325
    :param channels: number of input channels. :return: an nn.Module for normalization.
patil-suraj's avatar
patil-suraj committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class AttentionPool2d(nn.Module):
    """
    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
    """

    def __init__(
        self,
        spacial_dim: int,
        embed_dim: int,
        num_heads_channels: int,
        output_dim: int = None,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
343
        self.positional_embedding = nn.Parameter(torch.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
patil-suraj's avatar
patil-suraj committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
        self.num_heads = embed_dim // num_heads_channels
        self.attention = QKVAttention(self.num_heads)

    def forward(self, x):
        b, c, *_spatial = x.shape
        x = x.reshape(b, c, -1)  # NC(HW)
        x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
        x = self.qkv_proj(x)
        x = self.attention(x)
        x = self.c_proj(x)
        return x[:, :, 0]


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
362
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
patil-suraj's avatar
patil-suraj committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    """

    def forward(self, x, emb, context=None):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
Patrick von Platen's avatar
Patrick von Platen committed
387
388
        Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x
        T] tensor after attention.
patil-suraj's avatar
patil-suraj committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


def count_flops_attn(model, _x, y):
    """
Patrick von Platen's avatar
Patrick von Platen committed
411
    A counter for the `thop` package to count the operations in an attention operation. Meant to be used like:
patil-suraj's avatar
patil-suraj committed
412
        macs, params = thop.profile(
Patrick von Platen's avatar
Patrick von Platen committed
413
            model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops},
patil-suraj's avatar
patil-suraj committed
414
415
416
417
418
419
420
        )
    """
    b, c, *spatial = y[0].shape
    num_spatial = int(np.prod(spatial))
    # We perform two matmuls with the same number of ops.
    # The first computes the weight matrix, the second computes
    # the combination of the value vectors.
Patrick von Platen's avatar
Patrick von Platen committed
421
    matmul_ops = 2 * b * (num_spatial**2) * c
patil-suraj's avatar
patil-suraj committed
422
423
424
    model.total_ops += torch.DoubleTensor([matmul_ops])


patil-suraj's avatar
patil-suraj committed
425
class UNetLDMModel(ModelMixin, ConfigMixin):
patil-suraj's avatar
patil-suraj committed
426
    """
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
431
432
433
434
    The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param
    model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param
    num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample
    rates at which
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
patil-suraj's avatar
patil-suraj committed
435
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
436
437
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
patil-suraj's avatar
patil-suraj committed
438
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
439
440
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
patil-suraj's avatar
patil-suraj committed
441
442
443
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
444
445
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially
patil-suraj's avatar
patil-suraj committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
Patrick von Platen's avatar
Patrick von Platen committed
470
471
472
473
        use_spatial_transformer=False,  # custom transformer support
        transformer_depth=1,  # custom transformer support
        context_dim=None,  # custom transformer support
        n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
patil-suraj's avatar
patil-suraj committed
474
475
476
        legacy=True,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
477

patil-suraj's avatar
patil-suraj committed
478
        # register all __init__ params with self.register
479
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
            image_size=image_size,
            in_channels=in_channels,
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            num_classes=num_classes,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            use_spatial_transformer=use_spatial_transformer,
            transformer_depth=transformer_depth,
            context_dim=context_dim,
            n_embed=n_embed,
            legacy=legacy,
        )

        if use_spatial_transformer:
Patrick von Platen's avatar
Patrick von Platen committed
507
508
509
            assert (
                context_dim is not None
            ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
510
511

        if context_dim is not None:
Patrick von Platen's avatar
Patrick von Platen committed
512
513
514
            assert (
                use_spatial_transformer
            ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
515
516
517
518
519

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
Patrick von Platen's avatar
Patrick von Platen committed
520
            assert num_head_channels != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
521
522

        if num_head_channels == -1:
Patrick von Platen's avatar
Patrick von Platen committed
523
            assert num_heads != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
524
525
526
527
528
529
530
531
532
533
534
535

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
patil-suraj's avatar
patil-suraj committed
536
        self.dtype_ = torch.float16 if use_fp16 else torch.float32
patil-suraj's avatar
patil-suraj committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            self.label_emb = nn.Embedding(num_classes, time_embed_dim)

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
553
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
580
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
581
582
583
584
585
586
587
588
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
613
614
615
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
patil-suraj's avatar
patil-suraj committed
616
617
618
619
620
621
622
623
624
625
626
627
628
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
629
            # num_heads = 1
patil-suraj's avatar
patil-suraj committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=dim_head,
                use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
646
647
648
            )
            if not use_spatial_transformer
            else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
patil-suraj's avatar
patil-suraj committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
683
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
684
685
686
687
688
689
690
691
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
692
693
694
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
712
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
patil-suraj's avatar
patil-suraj committed
713
714
715
716
717
718
719
720
721
722
723
724
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
Patrick von Platen's avatar
Patrick von Platen committed
725
726
727
728
                normalization(ch),
                conv_nd(dims, model_channels, n_embed, 1),
                # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
            )
patil-suraj's avatar
patil-suraj committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

Patrick von Platen's avatar
Patrick von Platen committed
746
    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
patil-suraj's avatar
patil-suraj committed
747
        """
Patrick von Platen's avatar
Patrick von Platen committed
748
749
750
        Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch
        of timesteps. :param context: conditioning plugged in via crossattn :param y: an [N] Tensor of labels, if
        class-conditional. :return: an [N x C x ...] Tensor of outputs.
patil-suraj's avatar
patil-suraj committed
751
752
753
754
755
        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
patil-suraj's avatar
patil-suraj committed
756
757
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
758
        t_emb = get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
patil-suraj's avatar
patil-suraj committed
759
760
761
762
763
764
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape == (x.shape[0],)
            emb = emb + self.label_emb(y)

patil-suraj's avatar
patil-suraj committed
765
        h = x.type(self.dtype_)
patil-suraj's avatar
patil-suraj committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)


class EncoderUNetModel(nn.Module):
    """
Patrick von Platen's avatar
Patrick von Platen committed
782
    The half UNet model with attention and timestep embedding. For usage, see UNet.
patil-suraj's avatar
patil-suraj committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        pool="adaptive",
        *args,
Patrick von Platen's avatar
Patrick von Platen committed
807
        **kwargs,
patil-suraj's avatar
patil-suraj committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
        self.dtype = torch.float16 if use_fp16 else torch.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
836
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                            use_new_attention_order=use_new_attention_order,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
884
885
886
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
patil-suraj's avatar
patil-suraj committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
                use_new_attention_order=use_new_attention_order,
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch
        self.pool = pool
        if pool == "adaptive":
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
                nn.AdaptiveAvgPool2d((1, 1)),
                zero_module(conv_nd(dims, ch, out_channels, 1)),
                nn.Flatten(),
            )
        elif pool == "attention":
            assert num_head_channels != -1
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
Patrick von Platen's avatar
Patrick von Platen committed
934
                AttentionPool2d((image_size // ds), ch, num_head_channels, out_channels),
patil-suraj's avatar
patil-suraj committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
            )
        elif pool == "spatial":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                nn.ReLU(),
                nn.Linear(2048, self.out_channels),
            )
        elif pool == "spatial_v2":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                normalization(2048),
                nn.SiLU(),
                nn.Linear(2048, self.out_channels),
            )
        else:
            raise NotImplementedError(f"Unexpected {pool} pooling")

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)

    def forward(self, x, timesteps):
        """
Patrick von Platen's avatar
Patrick von Platen committed
968
969
        Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch
        of timesteps. :return: an [N x K] Tensor of outputs.
patil-suraj's avatar
patil-suraj committed
970
        """
971
972
973
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
patil-suraj's avatar
patil-suraj committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

        results = []
        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            if self.pool.startswith("spatial"):
                results.append(h.type(x.dtype).mean(dim=(2, 3)))
        h = self.middle_block(h, emb)
        if self.pool.startswith("spatial"):
            results.append(h.type(x.dtype).mean(dim=(2, 3)))
            h = torch.cat(results, axis=-1)
            return self.out(h)
        else:
            h = h.type(x.dtype)
            return self.out(h)